Equinoderms and crustaceans associated with the continental shelf (Colombian Caribbean)

Equinoderms and crustaceans associated with the continental shelf (Colombian Caribbean)

Authors

  • Yisnelis Carrillo Beleño Universidad de La Guajira
  • Geomar Molina-Bolívar Grupo de investigación BIEMARC. Universidad de La Guajira
  • Iris Jiménez-Pitre Grupo de investigación BIEMARC. Universidad de La Guajira

Keywords:

fondos blandos, fondos duros, pastos maarinos, sustrato artificial

Abstract

Echinoderms and crustaceans are involved in ecological processes which is why they have a value because they participate in maintaining ecosystem stability. In addition, they are indicators of natural and anthropic changes. Some ecological properties (composition, abundance and distribution) of echinoderms and crustaceos associated with different its rigs of the guajira media continental shelf in the Colombian Caribbean were determined, between September 2015 and May 2016 in five sectors. The samples were collected between 5 and 20 m deep on the continental shelf between the towns of Riohacha and Manaure. In addition, granulometry and calcimetry of sediments, salinity, conductivity, dissolved oxygen, pH, and nitrate-nitrite concentration were analyzed. For the groups studied, 11 taxa was determined: Phyla echinoderms (8 taxa) and subphylum crustaceans (3 taxas). The sector with the greatest abundance was Riohacha (582 ind/m2) and the least abundance Cangrejito (371 ind/m2), while Mayapo presented the greatest wealth of species. The area studied is characterized by the predominance of thick sands in all sectors, without significant differences between sampling sites (P > 0.05). The Echinoderms were more abundant on seagrass, while for the Crustaceans it was the artificial substrate. The guajira medium is considered uniform and homogeneous in the composition and abundance of the taxa studied.

Downloads

Download data is not yet available.

References

Baquero, A. C. J. (2005). Estructura de la comunidad de macrocrustáceos bentónicos de las áreas someras (0—20 m) y profundas (80 – 170 m) de las islas de Providencia y Santa Catalina presentes durante la época seca del 2005. [Pregrado]. Universidad Nacional de Colombia.

Birkett, L., & McIntyre, A. D. (1971). Treatment and sorting of samples. En N. Holme & A. McIntyre (Eds.), Methods for the study of marine Benthos, IBP Handbook. Vol. 16, 156-168).

Borrero-Pérez, G. H., Benavides-Serrato, M., & Solano, Ó. (2008). Brittle-stars (Echinodermata: Ophiuroidea) from the continental shelf and upper slope of the Colombian Caribbean. Revista de Biología Tropical, 56(3), 169-204.

Clarke, A. H., Sanders, H. L., & Hessler, R. R. (1969). Diversity and composition of abyssal benthos. Science, 166 (3908), 1033-1034.

Criales-Hernández, M. I., B García, C., & Wolff, M. (2006). Flujos de biomasa y estructura de un ecosistema de surgencia tropical en La Guajira, Caribe colombiano. Revista de biología tropical, 54 (4), 1257-1282.

Gracia, A., Cruz, N., Borrero, G., Báez, D., & Santodomingo, N. (2013). Invertebrados marinos asociados con las plataformas de gas en la guajira (caribe colombiano)*. Boletín de Investigaciones Marinas y Costeras -Invemar, 42 (2), 361-386. Retrieved July 10, 2020, from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0122-97612013000200008&lng=en&tlng=es.

Grassle, J. F., & Maciolek, N. J. (1992). Deep-sea species richness: Regional and local diversity estimates from quantitative bottom samples. The American Naturalist, 139 (2), 313-341.

Heath, M. R., Cook, R. M., Cameron, A. I., Morris, D. J., & Speirs, D. C. (2014). Cascading ecological effects of eliminating fishery discards. Nature Communications, 5 (3893), 1-8. https://doi.org/10.1038/ncomms4893

Hogarth, P. J. (2015). The biology of mangroves and seagrasses (3th edition). Oxford University Press.

INVEMAR. (2000). Programa Nacional de Investigación en Biodiversidad Marina y Costera PNIBM (J. Díaz Merlano & D. Gómez López, Eds.). Invemar, Fonade, MMA.

INVEMAR. (2016). Informe del estado de los ambientes y recursos marinos y costeros de Colombia año 2015 (Serie de Publicaciones Periódicas No. 3, p. 186).

Lamas, F., Irigaray, C., Oteo, C., & Chacón, J. (2005). Selection of the most appropriate method to determine the carbonate content for engineering purposes with particular regard to marls. Engineering Geology, 81(1), 32-41. https://doi.org/10.1016/j.enggeo.2005.07.005

MacMillan, M. R., Duarte, C., & Quijón, P. A. (2017). Sandy beaches in a coastline vulnerable to erosion in Atlantic Canada: Macrobenthic community structure in relation to backshore and physical features. Journal of sea research. 125, 26-33.

Macpherson, E. (1991). Biogeography and community structure of the decapod crustacean fauna off Namibia (Southeast Atlantic). Journal of Crustacean Biology. 11(3), 401-415.

Nõges, P., Argillier, C., Borja, Á., Garmendia, J. M., Hanganu, J., Kodeš, V., Pletterbauer, F., Sagouis, A., & Birk, S. (2016). Quantified biotic and abiotic responses to multiple stress in freshwater, marine and ground waters. Science of the Total Environment, 540, 43-52.

Polanía, J., Orozco-Toro, C. A., & Ángel, I. F. (2006). Delta del Río Ranchería (La Guajira, Colombia): Caudal, salidad y trasporte de sólidos y su posible influencia sobre composición y estructura de los manglares. Actualidades Biológicas, 28(84), 27-37.

Purcell, S., Conand, C., Uthicke, S., & Byrne, M. (2016). En R. Hughes, D. Hughes, I. Smith, & A. Dale (Eds.), Oceanography and Marine Biology An Annual Review V54 (Vol. 54, pp. 367-386). Taylor & Francis Group / CRC Press. https://doi.org/10.1201/9781315368597

Quirós-Rodríguez, J. A. (2015). Equinodermos en fondos someros del sector la Ahumadera, bahía de Cispatá, Córdoba, Caribe colombiano. Revista de Biología Tropical, 20(1), 101-108.

Ruiz-Abierno, A., & Armenteros, M. (2017). Coral reef habitats strongly influence the diversity of macro-and meiobenthos in the Caribbean. Marine Biodiversity, 47 (1), 101-111.

Sanders, H. L. (1968). Marine benthic diversity: A comparative study. The American Naturalist, 102 (925), 243-282.

Soto, E., Quiroga, E., Ganga, B., & Alarcón, G. (2017). Influence of organic matter inputs and grain size on soft-bottom macrobenthic biodiversity in the upwelling ecosystem of central Chile. Marine Biodiversity, 47 (2), 433-450.

Stoner Rife, G. (2018). Ecosystem Services Provided by Benthic Macroinvertebrate Assemblages in Marine Coastal Zones. En L. Hufnagel (Ed.), Ecosystem Services and Global Ecology (pp. 63-79). IntechOpen. https://www.intechopen.com/books/ecosystem-services-and-global-ecology/ecosystem-services-provided-by-benthic-macroinvertebrate-assemblages-in-marine-coastal-zones

Thomson, R. J., Hill, N. A., Leaper, R., Ellis, N., Pitcher, C. R., Barrett, N. S., & Edgar, G. J. (2014). Congruence in demersal fish, macroinvertebrate, and macroalgal community turnover on shallow temperate reefs. Ecological applications, 24 (2), 287-299.

Wentworth, C. K. (1922). A scale of grade and class terms for clastic sediments. The journal of geology, 30 (5), 377-392.

Wong, M., & Dowd, M. (2015). Patterns in Taxonomic and Functional Diversity of Macrobenthic Invertebrates Across Seagrass Habitats: A Case Study in Atlantic Canada. Estuaries & Coasts, 38(6), 2323-2336. https://doi.org/10.1007/s12237-015-9967-x

Published

2020-05-21

How to Cite

Carrillo Beleño, Y., Molina-Bolívar , G., & Jiménez-Pitre , I. (2020). Equinoderms and crustaceans associated with the continental shelf (Colombian Caribbean). Ciencia E Ingeniería (hasta Agosto De 2024), 7(1), e081. Retrieved from http://revistas.uniguajira.edu.co/rev/index.php/ceiantigua/article/view/e081
Loading...