Methodologys for the simulation of fluid dynamics in an internal combustion engine through SolidWorks
PDF (Español (España))
HTML (Español (España))
XML (Español (España))
VISOR (Español (España))

Keywords

computational fluid dynamic
Navier Stokes equations
Alternative internal combustion engine
intake stroke
exhaust stroke

How to Cite

Calderón Gutiérrez , I., Redondo Guerra, L., Macías Naranjo, R., Cerpa Olivera , F., & Gutiérrez Ramirez , G. (2023). Methodologys for the simulation of fluid dynamics in an internal combustion engine through SolidWorks. Ciencia E Ingeniería, 10(1), e8091885. https://doi.org/10.5281/zenodo.8091885

ARK

https://n2t.net/ark:/60540/8091885

Abstract

The computational representation of the fluid dynamic effects during the interaction between air as a working fluid and the different geometries that make up the intake and exhaust strokes in an Internal Combustion Engine (ICE) by means of Computational Fluid Dynamics (CFD) simulations using previously unpublished SolidWorks Flow Simulation (SWFS) is reported in this work. For which it was necessary to understand the requirements of the SWFS configuration process, adapt the initial and boundary conditions proposed in bibliographic precedents, and use an ICE geometry housed in a freely accessible geometric database. In the results it was possible to expose the characteristics of the working fluid inside the cylinder for various intake and exhaust valve openings in terms of key variables such as pressure, mass flow and speed fields called Swirl and Tumble; through validation it was possible to show that the proposed methodologies represent the fluid dynamics of air with a high level of convergence according to works reported in the literature.

https://doi.org/10.5281/zenodo.8091885
PDF (Español (España))
HTML (Español (España))
XML (Español (España))
VISOR (Español (España))

References

Cengel, Y. A., Boles, M. A., & Kanoglu, M. (2019). Termodinámica (9a edición). McGraw-Hill Interamericana de España S.L.

Chinnamuthu, N., Ganapathy, S. C., Malaiperumal, V., Varuvel, E. G., Raman, V., Boologarajan, P., & Kannan, A. (2021). Computational analysis of turbulence enhancement in a compression ignition engine with modified inlet design. Environmental Science and Pollution Research, 28(26), 33866–33879. https://doi.org/10.1007/s11356-020-10157-9

Dassault Systemes. (2021). SolidWorks Flow Simulation - Technical reference. https://help.solidworks.com/HelpProducts.aspx

El-Adawy, M., Heikal, M. R., Rashid, A., & Adewale Opatola, R. (2021). Stereoscopic particle image velocimetry for engine flow measurements: Principles and applications. Alexandria Engineering Journal, 60(3), 3327–3344. https://doi.org/10.1016/j.aej.2021.01.060

GrabCAD. (2021). GrabCAD: Design Community, CAD Library, 3D Printing Software. GrabCAD. https://grabcad.com/

Hsieh, C. F., Chen, K. T., & Johar, T. (2021). Fluid flow characteristics of two types rotary engines. International Journal of Hydrogen Energy, 46(80), 40154–40174. https://doi.org/10.1016/j.ijhydene.2021.09.250

Jacobs, T. J. (2020). Internal Combustion Engines, Developments in. In Encyclopedia of Sustainability Science and Technology Series: Vol. II (pp. 133–184). https://doi.org/10.1007/978-1-4939-9763-3_430

Jemni, M. A., Kantchev, G., & Abid, M. S. (2011). Influence of intake manifold design on in-cylinder flow and engine performances in a bus diesel engine converted to LPG gas fuelled, using CFD analyses and experimental investigations. Energy, 36(5), 2701–2715. https://doi.org/10.1016/j.energy.2011.02.011

Jemni, M. A., Kassem, S. H., Driss, Z., & Abid, M. S. (2018). Effects of hydrogen enrichment and injection location on in-cylinder flow characteristics, performance and emissions of gaseous LPG engine. Energy, 150, 92–108. https://doi.org/10.1016/j.energy.2018.02.120

Kacem, S. H., Jemni, M. A., Driss, Z., & Abid, M. S. (2016). The effect of H2 enrichment on in-cylinder flow behavior, engine performances and exhaust emissions: Case of LPG-hydrogen engine. Applied Energy, 179, 961–971. https://doi.org/10.1016/j.apenergy.2016.07.075

Lalwani, A., Awate, S., Chowdhury, A., & Sreedhara, S. (2019). Conversion of a single-cylinder internal combustion engine to dual-mode homogeneous charge compression ignition engine. Clean Technologies and Environmental Policy, 21(1), 23–37. https://doi.org/10.1007/s10098-018-1613-4

Liu, P. (2021). Computational Fluid Dynamics. In A General Theory of Fluid Mechanics (pp. 297–332). https://doi.org/10.1007/978-981-33-6660-2_4

Matsson, J. E. (2021). An Introduction to SOLIDWORKS Flow Simulation 2021. In SDC publications.

Nigro, A., Algieri, A., De Bartolo, C., & Bova, S. (2017). Fluid dynamic investigation of innovative intake strategies for multivalve internal combustion engines. International Journal of Mechanical Sciences, 123(June 2016), 297–310. https://doi.org/10.1016/j.ijmecsci.2017.02.018

Rojas, S. B., & Huaraz, M. A. (2018). Caracterización del Atomizado de Etanol y Propano en Inyectores Tipo Y Mediante SolidWorks Flow Simulation [Universidad Nacional Del Santa]. http://repositorio.uns.edu.pe/handle/UNS/3045

Scaggion, L. (2018). Analisi fluidodinamica tramite cfd e ottimizzazione del processo di riempimento nei motori di formula sae. UNIVERSITÁ DEGLI STUDI DI PADOVA.

Scott Wallace, J. (2017). Investigation of SolidWorks flow simulation as a valid tool for analyzing airfoil performance characteristics in low Reynolds number flows. Oklahoma State University.

Tordini, D. (2019). Diagnosing an Engine With SOLIDWORKS Flow Simulation. Mechanical Design, Simulation & Analysis. https://hawkridgesys.com/blog/diagnosing-an-engine-with-solidworks-flow-simulation

Totorean, A. F., Bernad, S. I., Ciocan, T., Totorean, I. C., & Bernad, E. S. (2022). Computational Fluid Dynamics Applications in Cardiovascular Medicine—from Medical Image-Based Modeling to Simulation: Numerical Analysis of Blood Flow in Abdominal Aorta. In D. Zeidan, L. T. Zhang, E. G. Da Silva, & J. Merker (Eds.), Advances in Fluid Mechanics. Forum for Interdisciplinary Mathematics. Springer, Singapore (pp. 1–42). https://doi.org/https://doi.org/10.1007/978-981-19-1438-6_1

Vázquez, C., & De la Morena, J. (2019). Análisis del desarrollo de la combustión bajo condiciones de carga homogénea mediante el uso de la máquina de compresión y expansión rápida [Universitat Politécnica de Valéncia, Escuela Técnica Superior de Ingenieros Industriales, Centro de Motores Térmicos]. https://riunet.upv.es/bitstream/handle/10251/98604/44877508_TFG_15184617546657028284912265978353.pdf?sequence=2

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Ivan Calderón Gutiérrez , Leonardo Redondo Guerra, Robert Macías Naranjo, Fainer Cerpa Olivera , Gail Gutiérrez Ramirez

Downloads

Download data is not yet available.