Abstract
Wind energy has become one of the fastest growing renewable energies in the last decade. In Colombia, the wind potential has important capacities to contribute to the country's progress in terms of energy, being a potential source of sustainable development. This article seeks to evaluate the generation of electrical energy from an offshore wind turbine of the VESTAS company in different points of the Caribbean region of Colombia based on wind speeds, scale parameters and shape parameters, offered by the Instituto of Hydrology, Meteorology and Environmental Studies of Colombia IDEAM, in order to analyze the Caribbean coast as a candidate for offshore wind energy production in Colombia. Based on the aforementioned data, statistical calculations were made in order to estimate the annual energy production in each of the points of interest and thus determine the most feasible places and departments for the installation of offshore wind farms in Colombia.
References
Acolgen. (2022). Capacidad instalada en Colombia. www.acolgen.org.co
Cevasco, D., Koukoura, S., & Kolios, A. J. (2021). Reliability , availability , maintainability data review for the identification of trends in offshore wind energy applications. Renewable and Sustainable Energy Reviews, 136(October 2020), 110414. https://doi.org/10.1016/j.rser.2020.110414
Instituto de Hidrología Meteorología y Estudios Ambientales IDEAM. (2018). Atlas de clima, radiación y viento de Colombia.
Liu, H., Chen, C., Lv, X., Wu, X., & Liu, M. (2019). Deterministic wind energy forecasting : A review of intelligent predictors and auxiliary methods. Energy Conversion and Management, 195(January), 328–345. https://doi.org/10.1016/j.enconman.2019.05.020
Navarro-monterroza, E. (2019). El Niño-Oscilación del Sur , fase Modoki , y sus efectos en la variabilidad espacio-temporal de la precipitación en Colombia. 43(166), 120–132.
Peters, G. P., Andrew, R. M., Canadell, J. G., Friedlingstein, P., Jackson, R. B., Korsbakken, J. I., Le Quéré, C., & Peregon, A. (2020). Carbon dioxide emissions continue to grow amidst slowly emerging climate policies. Nature Climate Change, 10(1), 3–6. https://doi.org/10.1038/s41558-019-0659-6
Sadorsky, P. (2021). Wind energy for sustainable development : Driving factors and future outlook. Journal of Cleaner Production, 289, 125779. https://doi.org/10.1016/j.jclepro.2020.125779
Saidur, R., Rahim, N. A., Islam, M. R., & Solangi, K. H. (2011). Environmental impact of wind energy. Renewable and Sustainable Energy Reviews, 15(5), 2423–2430. https://doi.org/10.1016/j.rser.2011.02.024
Seguro, J. V, & Lambert, T. W. (2000). Modern estimation of the parameters of the Weibull wind speed distribution for wind energy analysis. 85.
United Nations Environment Programme. (2021). Emissions Gap Report 2021: The Heat Is On. https://www.unep.org/resources/emissions-gap-report-2021
Vestas. (2022). V164-9.5 MW. https://www.vestas.com/en/products/offshore/V164-9-5-MW
XM. (2022). Pronóstico de demanda. https://www.xm.com.co/consumo/pronostico-de-demanda
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2022 Sebastián Estrada Girado , Frank Martinez Ruiz , Carlos Vides Prado