Abstract
Humic acids are a humified organic matter fraction that exhibit bioactive effets, which influence plant physiology, enhance root system development, stimulate primry and secondary metabolism, promote photosynthesis, cellular respiration and improve plant responses uder stress coditions; therefore, they have been widely studied as biostimulant agents, mainly in plants of agricultural interest. However, plant biostimulation options for other purposes, for example phytoremediation, have not been explored. The objective of this review is to analyze scientific evidence that leads to propose biostimulation with humic acids as a strategy to increase the removal of contaminants through phytoremediation plants. This document relates aspects of the structure and bioactivity of humic acids, the concepts of phytoremediation and biostimulation, and analyzes how the bioactive effect of humic acids on plants could influence the different phytoremediation strategies. The information analyzed can conclude that the AH will be used as plant pre-conditioners that will be used for removal contaminants in water and soil through phytoremediation, which can become a promising biotechnological strategy to assist in treatment processes of contaminated environments.
References
Agostini, E., Talano, M., González, P., Wevar, A., & Medina, M. (2013). Application of hairy roots for phytoremediation: what makes them an interesting tool for this purpose. Applied Microbiology and Biotechnology, 97: 1017–1030. https://doi.org/10.1007/s00253-012-
Aguilar Marín, M. B. (2012). Efectos de la aplicación de ácidos húmicos en dos variedades del cultivo de fréjol Phaseolus vulgaris L. [Tesis de pregrado, Universidad Técnica de Machala]. Repositorio digital Universidad Técnica de Machala http://repositorio.utmachala.edu.ec/handle/48000/625
Aioub, A., Li, Y., Qie, X., Zhang, X., & Hu, Z. (2019). Reduction of soil contamination by cypermethrin residues using phytoremediation with Plantago major and some surfactants. Environmental Sciencels Europe, 31(1): 1-12. https://doi.org/10.1186/s12302-019-0210-4
Alabdulla, S. A. (2019). Effect of foliar application of humic acid on fodder and grain yield of oat (Avena sativa L.). Research on Crops, 20(4): 880-885. DOI: 10.31830/2348-7542.2019.130
Alarcón, A., Barreio, P., Boicet. T. Ramos, M & Morales, J. (2018). Influencia de ácidos húmicos en indicadores bioquímicos y físico-químicos de la calidad del tomate. Revista Cubana de Química, 30 (2): 243-255. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2224-54212018000200006&lng=es&nrm=iso
Angst, G., Mueller, K. E., Nierop, K. G., & Simpson, M. J. (2021). Plant-or microbial-derived? A review on the molecular composition of stabilized soil organic matter. Soil Biology and Biochemistry, 156, https://doi.org/10.1016/j.soilbio.2021.108189
Arias, S. A., Betancur, F. M., Gómez, G., Salazar, J. P., & Hernández, M. L. (2010). Fitorremediación con humedales artificiales para el tratamiento de aguas residuales porcinas. Informador Técnico (Colombia). 74: 12 - 22. https://doi.org/10.23850/22565035.5
Arroyave, María del Pilar. (2004). La lenteja de agua (Lemna minor L.): una planta acuática promisoria. Revista EIA, (1): 33-38. ISSN 1794-1237. Disponible en: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1794-12372004000100004&lng=en&nrm=iso
Awad, M., El-Desoky, M. A., Ghallab, A., Kubes, J., Abdel-Mawly, S. E., Danish, S., & Sabagh, A. (2021). Ornamental Plant Efficiency for Heavy Metals Phytoextraction from Contaminated Soils Amended with Organic Materials. Molecules, 26(11), 3360. doi: 10.3390/molecules26113360
Ayala, R., Calderon, E., Rascon, J., & Collazos, R. (2018). Fitorremediación de aguas residuales domésticas utilizando las especies Eichhornia crassipes, Nymphoides humboldtiana y Nasturtium officinale. Revista de Investigación en Agroproducción Sustentable, 2(3): 48-53. http://dx.doi.org/10.25127/aps.20183.403.
Baldotto, M., & Borges, L. (2014). Ácidos húmicos. Revista Ceres [online], 61: 856-881. https://doi.org/10.1590/0034-737x201461000011
Basu, H., Saha, S., Viveck, M., & Kumar, R. (2019). Novel hybrid material humic acid impregnated magnetic chitosan nano particles for decontamination of uranium from aquatic environment. Journal of Environmental Chemical Engineering, 7(3). DOI:10.1016/j.jece.2019.103110
Bernal, F. (2014). Phyto-remediation in soils restoration: a general vision. Revista de Investigación Agraria y Ambiental, 5(2): 245-258.
Calderín, A., Ambrosio, L., Pereira, M., Castro, R., García, J., Zonta, E., Goncalves, F., & Louro, R. (2016). Structure-Property-Function Relationship in Humic Substances to Explain the Biological Activity in Plants. Scientific Reports, 6. https://doi.org/10.1038/srep20798
Canellas, L. & Olivares, F. (2014). Physiological responses to humic substances as plant growth promoter. Chem. Chemical and Biological Technologies in Agriculture, 1(3): 1- 11. https://doi.org/10.1186/2196-5641-1-3
Canellas, L. P., Canellas, N. O., Irineu, L. E., Olivares, F. L., & Piccolo, A. (2020). Plant chemical priming by humic acids. Chemical and Biological Technologies in Agriculture, 7(1): 1-17. https://doi.org/10.1186/s40538-020-00178-4
Canellas, L. P., Olivares, F. L., Aguiar, N. O., Jones, D. L., Nebbioso, A., Mazzei, P., & Piccolo, A. (2015). Humic and fulvic acids as biostimulants in horticulture. Scientia horticulturae, 196: 15-27. https://doi.org/10.1016/j.scienta.2015.09.013
Canellas, L. P., Olivares, F. L., Okorokova, A. L., & Façanha, A. R. (2002). Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots. Plant physiology, 130(4): 1951-1957. DOI: 10.1104/pp.007088
Canellas, L. P., Teixeira Junior, L. R. L., Dobbss, L. B., Silva, C. A., Medici, L. O., Zandonadi, D. B., & Façanha, A. R. (2008). Humic acids crossinteractions with root and organic acids. Annals of Applied Biology, 153(2): 157-166. DOI:10.1111/j.1744-7348.2008.00249.x
Centeno, L. E. (2015). Respuesta de dos variedades de frejol (Phaseolus vulgaris L.) a la aplicación de tres ácidos húmicos en el valle de Moquegua. [Tesis de pregrado, Universidad Nacional Jorge Basadre Grohmann]. Repositorio institucional de la Universidad Nacional Jorge Basadre Grohmann http://repositorio.unjbg.edu.pe/handle/UNJBG/1750
Chianese, S., Fenti, A., Iovino, P., Musmarra, D., & Salvestrini, S. (2020). Sorption of organic pollutants by humic acids: A review. Molecules, 25(4): 918. https://doi.org/10.3390/molecules25040918
Conte, P., Agretto, A., Spacciani, R., Piccolo, A. (2005). Soil remediation: humic acids as natural surfactants in the washings of highly contaminated soils. Environmental Pollution, 135(3): 515-522. DOI: 10.1016/j.envpol.2004.10.006.
de Melo, B., Lopez, F., & Andrade, M. (2016). Humic acids: Structural properties and multiple functionalities for novel technological developments. Materials Science and Engineering: 62: 967–974. DOI: 10.1016/j.msec.2015.12.001
de Oliveira, R., Baldotto, M. A., Andrade, M. A., Baldotto, L. E. B., & Oliveira, H. P. D. (2018). Performance of pre-sprouted sugarcane seedlings in response to the application of humic acid and plant growth-promoting bacteria. : Ciências Agrárias, 39(3): 1365-1370. DOI: https://doi.org/10.5433/1679-0359.2018v39n3p1365
Debiec, K., Krucon, T., Piatkowska, K., Drewniak, L. (2020). Enhancing the plants growth and arsenic uptake from soil using arsenite-oxidizing bacteria. Environmental Pollutution, 264. DOI: 10.1016/j.envpol.2020.114692
Dercová, K., Sejáková, Z., Skokanová, M., Barančíková, G., & Makovníková, J. (2007). Bioremediation of soil contaminated with pentachlorophenol (PCP) using humic acids bound on zeolite. Chemosphere, 66 (5): 783-790. DOI: 10.1016/j.chemosphere.2006.06.061
Díaz-Fuenmayor, K. J., Pantoja-Guerra, M., Torres-Palma, R. A., & Valero, N. (2017). Changes on the bioavailability of DDT in soil by addition of lignite and coal solubilizing bacteria. Revista internacional de contaminación ambiental, 33(2), 259-268. https://doi.org/10.20937/rica.2017.33.02.07.
Dou, sen.,U., Shan, J., Song, X., Cao, R . Wu, M., Chenglin, L. I., & Guan, S. (2020). Are humic substances soil microbial residues or unique synthesized compounds? A perspective on their distinctiveness. Pedosphere, 30(2), 159-167. https://doi.org/10.1016/S1002-0160(20)60001-7
Ekin, Z. (2019). Integrated use of humic acid and plant growth promoting rhizobacteria to ensure higher potato productivity in sustainable agriculture. Sustainability, 11(12): 3417. https://doi.org/10.3390/su11123417
Fornaris, G. J. (2007). Características de la planta 2. Conjunto Tecnológico para la Producción de Tomate de Ensalada. (Publicación 166). Estación experimental agrícola Universidad de Puerto Rico.
Gabriele, I., Race, M., Papirio, S., & Esposito, G. (2021). Phytoremediation of pyrene-contaminated soils: A critical review of the key factors affecting the fate of pyrene. Journal of Environmental Management, 293. DOI: 10.1016/j.jenvman.2021.112805
Gao, J. J., Peng, R. H., Zhu, B., Tian, Y. S., Xu, J., Wang, B. & Yao, Q. H. (2021). Enhanced phytoremediation of TNT and cobalt co-contaminated soil by AfSSB transformed plant. Ecotoxicology and Environmental Safety, 220. DOI: 10.1016/j.ecoenv.2021.112407
García, A., Combatt, E., & Palencia, M. (2018). Estudio estructural de la humina y sus interacciones con ácidos húmicos mediante espectroscopia de infrarrojo medio con transformada de Fourier. Journal of Science with Technological Applications, 4. 28-39
Gevao, B., Semple, K., & Jones, K. (2000). Bound pesticide residues in soils: a review. Environmental Pollution, 108 (1): 3-14. DOI: 10.1016/s0269-7491(99)00197-9
Gholami, H., Saharkhiz, MJ., Fard, FR., Ghani, A., & Nadaf, F. (2018). Humic acid and vermicompost increased bioactive components, antioxidant activity and herb yield of Chicory (Cichorium intybus L.). Biocatalysis and Agricultural Biotechnology. 14: 286-292.
Guerron, J.J., & Meneses, C. A. (2009). Evaluación agronómica de tres variedades de higuerilla (Ricinus communis) en las condiciones del corregimiento de La Rejoya, municipio de Popayán. [Tesis de pregrado, Universidad del Cauca]. Repositorio Universidad del Cauca http://repositorio.unicauca.edu.co:8080/xmlui/handle/123456789/722
Hansima, M. K., Jayaweera, A. T., Ketharani, J., Ritigala, T., Zheng, L., Samarajeewa, D. R.,... & Weerasooriya, R. (2022). Characterization of humic substances isolated from a tropical zone and their role in membrane fouling. Journal of Environmental Chemical Engineering, https://doi.org/10.1016/j.jece.2022.107456
Huertas, O. C., Azevedo, L. A., Ferreira, L. M., Sperandio, J., da Rocha, A., García,L., Dobbs, R., Berbara, S., de Sousa, M., & Fernandes, M. S. (2016). Humic acid differentially improves nitrate kinetics under low- and high-affinity systems and alters the expression of plasma membrane H+-ATPases and nitrate transporters in rice. Annals of Applied Biology, 170(1): 89–103. DOI: 10.1111/aab.12317
Huertas, O. C., Azevedo, L. A., Filho, D., Ferreira, L., García, A., Van Tol, T., Zonta, E., Pereira, M. & Fernandes, M. (2020). Response surface modeling of humic acid stimulation of the rice (Oryza sativa L.) root system. Archives of Agronomy and Soil Science, 67: 1-14. DOI: 10.1080/03650340.2020.1775199
Jannin, L. et al. (2012). Microarray analysis of humic acid effects on Brassica napus growth: Involvement of N, C and S metabolisms. Plant Soil, 359: 297–319. DOI:10.1007/s11104-012-1191-x
Ke, L., Bao, W., Chen, L.,Wong, Y., & Yee, N. (2009). Effects of humic acid on solubility and biodegradation of polycyclic aromatic hydrocarbons in liquid media and mangrove sediment slurries. Chemosphere, 76 (8); 1102-1108. DOI: 10.1016/j.chemosphere.2009.04.022
Ke, L., Wong, W., Wong, A., Wong, H., Wong, Y., & Tam, N. (2003). Negative effects of humic acid addition on phytoremediation of pyrene-contaminated sediments by mangrove seedlings. Chemosphere, 52(9); 1581-1591. DOI: 10.1016/S0045-6535(03)00498-3
Kopecký, M., Peterka, J., Kolář, L., Konvalina, P., Maroušek, J., Váchalová, R., & Tran, D. K. (2021). Influence of selected maize cultivation technologies on changes in the labile fraction of soil organic matter sandy-loam cambisol soil structure. Soil and Tillage Research, 207, https://doi.org/10.1016/j.still.2020.104865
Kukuļs, I., Kļaviņš, M., Nikodemus, O., Kasparinskis, R., & Brūmelis, G. (2019). Changes in soil organic matter and soil humic substances following the afforestation of former agricultural lands in the boreal-nemoral ecotone (Latvia). Geoderma Regional, 16. https://doi.org/10.1016/j.geodrs.2019.e00213
Kurade, M. B., Ha, Y. H., Xiong, J. Q., Govindwar, S. P., Jang, M., & Jeon, B. H. (2021). Phytoremediation as a green biotechnology tool for emerging environmental pollution: A step forward towards sustainable rehabilitation of the environment. Chemical Engineering Journal, 415: 12904. Q1, IF 13.273.
León Romero, J. A. (2017). Una Mirada a la Fitorremediación en Latinoamérica. [Trabajo de grado, Universidad Nacional Abierta y a Distancia]. Repositorio Universidad Nacional Abierta y a Distancia https://repository.unad.edu.co/handle/10596/13866
Li, R., Wen, B., Zhang, S., Pei, Z., & Shan, X. (2009). Influence of organic amendments on the sorption of pentachlorophenol on soils. J Environ Sci. 21(4):474-80. DOI: 10.1016/s1001-0742(08)62294-9
Lin, H., Liu, C., Li, B., & Dong, Y. (2021). Trifolium repens L. regulated phytoremediation of heavy metal contaminated soil by promoting soil enzyme activities and beneficial rhizosphere associated microorganisms. Journal of Hazardous Materials, 402: 123829. DOI: 10.1016/j.jhazmat.2020.123829
Liu, M., Wang, C., Wang, F., & Xie, Y. (2019). Maize (Zea mays) growth and nutrient uptake following integrated improvement of vermicompost and humic acid fertilizer on coastal saline soil. Applied Soil Ecology, 142: 147-154. DOI:10.1016/J.APSOIL.2019.04.024
López, R., González, G., Vázquez, R., Olivares, E., Vidales, J, Carranza, R, & Ortega, M. (2014). Metodología para obtener ácidos húmicos y fúlvicos y su caracterización mediante espectrofotometría infrarroja. Revista mexicana de ciencias agrícolas, 5(8): 1397-1407. Disponible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-09342014001001397&lng=es&nrm=iso
Machiani, M., Rezaei-Chiyaneh, E., Javanmard, A., Maggi, F., & Morshedloo, M. (2019). Evaluation of common bean (Phaseolus vulgaris L.) seed yield and quali-quantitative production of the essential oils from fennel (Foeniculum vulgare Mill.) and dragonhead (Dracocephalum moldavica L.) in intercropping system under humic acid application. Journal of Cleaner Production, 235: 112-122. DOI:10.1016/j.jclepro.2019.06.241
Mahmood, Q., Siddiqi, M. R., Islam, E. U., Azim, M. R., Zheng, P., & Hayat, Y. (2005). Anatomical studies on water hyacinth (Eichhornia crassipes (Mart.) Solms) under the influence of textile wastewater. Journal of Zhejiang University. Science. B, 6(10), 991–998. https://doi.org/10.1631/jzus.2005.B0991
Martínez, C., Bravo, I., & Martin, F. (2013). Composición molecular de ácidos húmicos evaluada mediante pirólisis-cromatografia de gases-masas e hidrólisis térmica asistida y metilación, en suelos altoandinos–Colombia. Revista colombiana de química, 42(1): 22-29. Disponible en: https://revistas.unal.edu.co/index.php/rcolquim/article/view/44408
Matuszak, R., Bejger, R., Cieśla, J., Bieganowski, A., Koczańska, M., Gawlik, A., & Gołębiowska, D. (2017). Influence of humic acid molecular fractions on grow th and development of soybean seedlings under salt stress. Plant Growth Regulation, 83(3): 465-477. DOI:10.1007/s10725-017-0312-1
Mazzei, P., & Piccolo, A. (2012). Quantitative Evaluation of Noncovalent Interactions between Glyphosate and Dissolved Humic Substances by NMR Spectroscopy. Environ. Sci. Technol, 46 (11): 5939–5946. DOI: 10.1021/es300265a
Méndez, N. L., Parrado, C., & Henríquez, L. (2020). Procesos de fitorremediación en suelos contaminados con cadmio: Revisión de Literatura. [Trabajo de grado, Escuela agrícola panamericana]. http://hdl.handle.net/11036/6760
Meng, F., Xiang, D., Zhu, J., Li, Y., & Mao, C. (2019). Molecular mechanisms of root development in rice. Rice, 12(1), 1-10. https://doi.org/10.1186/s12284-018-0262-x
Mielnik, L., Hewelke, E., Weber, J., Oktaba, L., Jonczak, J., & Podlasiński, M. (2021). Changes in the soil hydrophobicity and structure of humic substances in sandy soil taken out of cultivation. Agriculture, Ecosystems & Environment, 319. https://doi.org/10.1016/j.agee.2021.107554
Montenegro, S. P., Pulido, S. Y., & Vallejo, L. F. C. (2019). Prácticas de biorremediación en suelos y aguas. Sello Editorial UNAD Universidad Nacional Abierta y a Distancia. (1.a edición). Disponible en https://doi.org/10.22490/notas.3451
Moore, M.T., Huggett, D.B., Huddleston, G.M., Rodgers J.H., Cooper, C.M. (1999). Herbicide effects on Typha latifolia (Linneaus) germination and root and shoot development. Chemosphere, 38(15), 3637-3647. DOI: 10.1016/s0045-6535(98)00561-x
Mora, V., Bacaicoa, E., Zamarreño, A, Aguirre, E., Garnica, M., Fuentes, M., & García-Mina, J. (2010). Action of humic acid on promotion of cucumber shoot growth involves nitrate-related changes associated with the root-to-shoot distribution of cytokinins, polyamines and mineral nutrients. Journal of Plant Physiology. 167(8): 633-642. DOI: 10.1016/j.jplph.2009.11.018
Mora, V., Baigorri, R., Bacaicoa, E., Zamarreno, A., & García, J. (2012). The humic acid-induced changes in the root concentration of nitric oxide, IAA and ethylene do not explain the changes in root architecture caused by humic acid in cucumber. Environmental and Experimental Botany, 76: 24-32. DOI: 10.1016/j.envexpbot.2011.10.001
Murphy, E., & Zachara, J. (1995). The role of sorbed humic substances on the distribution of organic and inorganic contaminants in groundwater. Geoderma. 67 (1–2): June 1995, 103-124. https://doi.org/10.1016/0016-7061(94)00055-F
Nardi, S., Pizzeghello, D., Schiavon, M., & Ertani, A. (2016). Plant biostimulants: physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism. Scientia Agricola, 73: 18-23. DOI: 10.1590/0103-9016-2015-0006
Nardi, S., Schiavon, M., & Francioso, O. (2021). Chemical Structure and Biological Activity of Humic Substances Define Their Role as Plant Growth Promoters. Molecules. 26: 2256. https://doi.org/10.3390/molecules26082256
Ning, W., Li, W., Pi, W., Xu, Y., Cao, M., & Luo, J. (2021). Effects of decapitation and root cutting on phytoremediation efficiency of Celosia argentea. Ecotoxicology and Environmental Safety, 215. https://doi.org/10.1016/j.ecoenv.2021.112162
Nunes, R. O., Domiciano, G. A., Alves, W. S., Melo, A. C. A., Nogueira, F. C. S., Canellas, L. P., & Soares, M. R. (2019). Evaluation of the effects of humic acids on maize root architecture by label-free proteomics analysis. Scientific reports, 9(1): 12019. DOI: 10.1038/s41598-019-48509-2
Olivares, F.L., Oliveira, N., Carriello, R., & Canellas, L.P., (2015). Substrate biofortification in combination with foliar sprays of plant growth promotingbacteria and humic substances boosts production of organic tomatoes. Scientia Horticulturae, 183: 100–108. https://doi.org/10.1016/j.scienta.2014.11.012
Oliveros, A. D. J., Macías, F. A., Fernández, C. C., Marín, D., & Molinillo, J. M. (2009). Exudados de la raíz y su relevancia actual en las interacciones alelopáticas. Química nova, 32: 198-213. https://doi.org/10.1590/S0100-40422009000100035
Oniosun, S., Harbottle, M., Tripathy, S., & Cleall, P. (2019). Plant growth, root distribution and non-aqueous phase liquid phytoremediation at the pore-scale. Journal of environmental management, 249, 109378. DOI: 10.1016/j.jenvman.2019.109378
Ortiz, V. D. (2010). Determinación de la presencia de ácidos grasos omega 3 en el huevo de gallina Lohmann roja bajo un sistema de pastoreo, con suplementación ad libitum de verdolaga (Portulaca oleracea)”. [Tesis de pregrado, Universidad de San Carlos de Guatemala]. Repositorio del sistema bibliotecario Universidad de San Carlos de Guatemala http://www.repositorio.usac.edu.gt/id/eprint/7926
Pantoja Guerra, M., Almanza Pérez, Y., & Valero Valero, N. (2016). Evaluación del efecto auxin-like de ácidos húmicos en maíz mediante análisis digital de imágenes. Revista UDCA Actualidad & Divulgación Científica, 19(2): 361-369 https://doi.org/10.31910/rudca.v19.n2.2016.90
Paredes Páliz, K. I. (2017). Fitoestabilización de metales pesados en sedimentos costeros asistida por bacterias rizosféricas. [Tesis de pregrado, Universidad de Sevilla]. Depósito de investigación Universidad de Sevilla http://hdl.handle.net/11441/64416
Pensini, E., Tchoukov, P., Yang, F., & Xu, Z. (2018). Effect of humic acids on bitumen films at the oil-water interface and on emulsion stability: Potential implications for groundwater remediation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 544: 53–59. https://doi.org/10.1016/j.colsurfa.2018.02.024
Pérez, J., Pacheco, F., Yepes, Á., Luna, R., Zambrano, D., Vázquez, V. F., Cabrera, D., Guzmán, Y., Torres, J., & Rodríguez, W. (2017). Ácidos Húmicos y su efecto sobre variables morfométricas en plantas de zanahoria (Daucus carota L). Biotecnia, 19(2), 25-29. https://doi.org/10.18633/biotecnia.v19i2.381
Piccolo, A., De Martino, A., Scognamiglio, F., Ricci, R., & Spaccini, R. (2021). Efficient simultaneous removal of heavy metals and polychlorobiphenyls from a polluted industrial site by washing the soil with natural humic surfactants. Environmental Science and Pollution Research, 28(20), 25748-25757. DOI: 10.1007/s11356-021-12484-x
Quispe, G. J. (2021). Efecto analgésico de un gel elaborado a base del extracto Hidroalcohólico de las hojas de Amaranthus spinosus Linn (Yuyo Colorado Espinoso) AL 1% EN Rattus rattus var albinus. [Tesis de pregrado, Universidad Católica los Ángeles de Chimbote]. Repositorio institucional Universidad Católica los Ángeles de Chimbote http://repositorio.uladech.edu.pe/handle/123456789/20579
Rahale, C. S., Lakshmanan, A., Sumithra, M. G., & Kumar, E. R. (2021). Humic acid involved chelation of ZnO nanoparticles for enhancing mineral nutrition in plants. Solid State Communications, 333: 114355. https://doi.org/10.1016/j.ssc.2021.114355
Rasouli, M., Karimi. H., Ashrafi, S., Khodaverdiloo, H. (2019). The Effect of Humic Acid on the Phytoremediation Efficiency of Pb in the Contaminated Soils by Wormwood Plant (Artemicia absantium). Journal of Water and Soil Science. 22 (4):261-278 DOI: 10.29252/jstnar.22.4.261
Reyes, J., Enríquez, A., Ramírez, M., Rodríguez, A. T., & Rodríguez, A. (2020). Efecto de ácidos húmicos, micorrizas y quitosano en indicadores del crecimiento de dos cultivares de tomate (Solanum lycopersicum L.). Terra Latinoamericana, 38(3): 653-666. https://doi.org/10.28940/terra.v38i3.671
Rivero, M., Solórzano, Arturo. (2019). Efecto de quitosano, hongos micorrízicos y ácidos húmicos sobre el crecimiento y desarrollo en variedades de pimiento (Capcicum annuum L) bajo condiciones protegidas. [Tesis de pregrado, Universidad Técnica estatal de Quevedo]. Repositorio digital Universidad Técnica estatal de Quevedo. https://repositorio.uteq.edu.ec/handle/43000/3848
Santa Rosa, A. C., Ferreira, M. H., de Carvalho, V., & Silveira, M. J. (2019). Morfoanatomia da raiz, caule e folha de Pistia stratiotes l. SaBios-Revista de Saúde e Biologia, 14(2): 42-47. Disponible en: https://revista2.grupointegrado.br/revista/index.php/sabios/article/view/2930
Scaglia, B., Pognani, M., & Adani, F. (2017). The anaerobic digestion process capability to produce biostimulant: the case study of the dissolved organic matter (DOM) vs. auxin-like property. Science of the Total Environment, 589: 36-45. https://doi.org/10.1016/j.scitotenv.2017.02.223
Seguel, O., Parra, C., Homer, I., Kremer, C., & Beyá-Marshall, V. (2019). Efecto del ácido húmico sobre las propiedades físicas de un Haplohumult cultivado con trigo. Agro Sur, 47(3): 27-38. https://doi.org/10.4206/agrosur.2019.v47n3-04
Soppelsa, S., Kelderer, M., Casera, C., Bassi, M., Robatscher, P., Matteazzi, A., & Andreotti, C. (2019). Foliar applications of biostimulants promote growth, yield and fruit quality of strawberry plants grown under nutrient limitation. Agronomy, 9(9): 483. https://doi.org/10.3390/agronomy9090483
Stehlickova, L., Svab, M., Wimmerova, L., & Kozler, J. (2009). Intensification of phenol biodegradation by humic substances. International Biodeterioration & Biodegradation, 63(7), 923-927. https://doi.org/10.1016/j.ibiod.2009.06.007
Suárez, A. V. (2021). Efecto de la aplicación de ácidos húmicos sobre propiedades químicas del suelo y plantas de lechuga Batavia. [Tesis de posgrado, Universidad Nacional de Colombia]. Repositorio institucional Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/79720
Trevisan, S., Francioso, O., Quaggiotti, S., & Nardi, S. (2010). Humic substances biological activity at the plant-soil interface: from environmental aspects to molecular factors. Plant signaling & behavior, 5(6): 635-643. doi: 10.4161/psb.5.6.11211
Valero, N. O. V., Vergel, C. M., Ustate, Y. E., & Gómez, L. C. (2021). Bioestimulación de frijol guajiro y su simbiosis con Rhizobium por ácidos húmicos y Bacillus mycoides. Biotecnología En El Sector Agropecuario Y Agroindustrial, 19(2): 154-169. https://doi.org/10.18684/bsaa.v19.n2.2021.1608
van Tol, A. T., Louro, R. L., Huertas, O. C., da Graça, D. F., Gomes, E., Barros, C., Maqueira, L., & Calderín, A. (2021). Humic acids induce a eustress state via photosynthesis and nitrogen metabolism leading to a root growth improvement in rice plants, Plant Physiology and Biochemistry, 162: 171-184. DOI: 10.1016/j.plaphy.2021.02.043
Veobides, H., Guridi, F., & Vázquez, V. (2018). Las sustancias húmicas como bioestimulantes de plantas bajo condiciones de estrés ambiental. Cultivos Tropicales, 39(4): 102-109. Disponible en http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0258-59362018000400015&lng=es&nrm=iso
Wang, X., Lyu, T., Dong, R., Liu, H., & Wu, S. (2021). Dynamic evolution of humic acids during anaerobic digestion: Exploring an effective auxiliary agent for heavy metal remediation. Bioresource Technology, 320: 124331. https://doi.org/10.1016/j.biortech.2020.124331
Whitfield, M., Lunney, A., Rutterb,A., & Zeeb, A. (2010). Effects of amendments on the uptake and distribution of DDT in Cucurbita pepo ssp pepo plants. Environmental Pollution, 158 (2): 508-513. DOI: 10.1016/j.envpol.2009.08.030
Wu, Y., Ma. L., Liu, Q., Vestergård, M., Topalovic, O., Wang, Q., Zhou, Q., Huang, L., Yang, X., & Fen, Y. (2020). The plant-growth promoting bacteria promote cadmium uptake by inducing a hormonal crosstalk and lateral root formation in a hyperaccumulator plant Sedum alfredii. Journal of Hazardous Materials. 395. DOI: 10.1016/j.jhazmat.2020.122661
Xu, B., Lian, Z., Liu, F., Yu, Y., He, Y., Brookes, P. C., & Xu, J. (2019). Sorption of pentachlorophenol and phenanthrene by humic acid-coated hematite nanoparticles. Environmental Pollution, 248: 929 -937. DOI: 10.1016/j.envpol.2019.02.088
Yoon, H. Y., Jeong, H. J., Cha, J. Y., Choi, M., Jang, K. S., Kim, W. Y., & Jeon, J. R. (2020). Structural variation of humic-like substances and its impact on plant stimulation: Implication for structure-function relationship of soil organic matters. Science of the Total Environment, 725, 138409.
Zhu, H., Chen, L., Xing, W., Ran, S., Wei, Z., Amee, M., & Chen, K. (2020). Phytohormones-induced senescence efficiently promotes the transport of cadmium from roots into shoots of plants: a novel strategy for strengthening of phytoremediation. Journal of hazardous materials, 388, 122080. DOI: 10.1016/j.jhazmat.2020.122080
Zingaretti, D., Lombardi, F., & Baciocchi, R. (2018). Soluble organic substances extracted from compost as amendments for Fenton-like oxidation of contaminated sites. Science of the Total Environment, 619: 1366-1374. DOI: 10.1016/j.scitotenv.2017.11.178
Zou, J., Zhang, H., Yue, D., & Huang, J. (2021). Is the traditional alkali extraction method valid in isolating chemically distinct humic acid. Chemical Engineering Journal Advances, 6. https://doi.org/10.1016/j.ceja.2020.100077
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2022 Michel Caballero Castaño , Nelson Valero Valero , Manuel Pantoja Guerra