Abstract
Tracking the prices of the basic food basket is fundamental to ensure food security and economic stability of a country. For this purpose, a set of Python scripts were developed to collect price data from five supermarket websites. For this purpose, the Selenium browser automator was used, which together with libraries such as Pandas and Numpy, allowed the consolidation of the information corresponding to the name of the products, their descriptions, their prices and the dates of information capture for a period of time of 100 days. Finally, a series of dashboards were created in Power BI in order to know the experience of a group of users with the information presented. The results of the concept test with users identified aspects of presentation, search, comprehension, inference and decision making based on the visualizations presented. Regarding this last aspect, users pointed out that the absence of information related to the price per gram or per milliliter for the products does not allow them to make comparisons that lead them to clearly differentiate the prices of these products. This is an element that will be addressed in a future paper.
References
ACIS (2022). Análisis sobre los efectos del aumento de precios en la canasta básica. Informe técnico, Bogotá, Colombia.
DANE-Índice de Precios al Consumidor (IPC). (2024). https://www.dane.gov.co/index.php/estadisticas-por-tema/precios-y-costos/indice-de-precios-al-consumidor-ipc/ da Silva F., Almeida R., & Santos G. (2023). Web scraping techniques for consumer price index calculation. Statistical Research Journal, 45(3), 150–165.
Departamento Nacional de Planeación (2022). Informe anual sobre los efectos de la inflación en los hogares colombianos. Bogotá, Colombia.
Faramarzi, A., Hadizadeh, R., Fayyaz, S., Sajadimanesh, S. & Moradi, A. (2022). Web Scraping Technique for Producing Iranian Consumer Price Index. Statistical Journal of the IAOS, 38(1), 263–276.
Federico, L., Franco P., Minelli, A., Perri, A., Caroprese, L., Picarelli, R., Tradigo, G., Vocaturo, E., Dattola, F., Fortunato, A., Lambardi, P., Laurita, S., Pellegrino, I., Garro, A., Pugliese, A., Tagarelli, A., Veltri, P. & Zumpano E. (2016). SINSE+: a software for the acquisition and analysis of open data in health and social area. In Bochicchio, M. A. & Mecca, G. (2016) (eds.), SEBD (pp. 310-317), Matematicamente.it. ISBN: 9788896354889.
Financial Managers’ Forum (2005). Financial Analysis Planning & Reporting, 5(5), 15.
Khder, M.A. (2021). Web Scraping or Web Crawling: State of Art Techniques, Approaches, and Application. International Journal of Advances in Soft Computing and its Applications.
Kotler, P. & Armstrong, G. (2012). Principios de Marketing. 14ª edición. Pearson Educación. Madrid, España.
Krummert, B. (2016). Millennials ramp up restaurant spending. Restaurant Hospitality Exclusive Insight, 3.
Lima R., & Cruz E.F. (2019). Extraction and Multidimensional Analysis of Data from Unstructured Data Sources: A Case Study. International Conference on Enterprise Information Systems.
Loy, J.-P. & Ren, Y. (2022). Web scraping of food retail prices. In: Gandorfer, M., Hoffmann, C., El Benni, N., Cockburn, M., Anken, T. & Floto, H. (Hrsg.), 42. GIL-Jahrestagung Künstliche Intelligenz in der Agrar- und Ernährungswirtschaft, Bonn: Gesellschaft für Informatik e.V. (pp. 177-182).
Martínez, F. (2022). Impacto del aumento de los precios de los combustibles en la canasta básica alimentaria. Reporte económico, Universidad Nacional.
Singrodia, V., Mitra, A. & Paul, S. (2019). A Review on Web Scrapping and its Applications. 2019 International Conference on Computer Communication and Informatics (ICCCI) (pp. 1-6). Coimbatore, India. doi: 10.1109/ICCCI.2019.8821809.
Taylor N. G. A., Luongo G., Jago E., & Mah C. L. (2023). Observational study of population level disparities in food costs in 2021 in Canada: A digital national nutritious food basket (dNNFB). Preventive Medicine Reports, 32, 102162. https://doi.org/10.1016/j.pmedr.2023.102162.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.