Optimization of Isolated Microgrid in the indigenous community of Teweno with HOMER PRO and the ELECTRE Multicriteria Method
PDF (Español (España))
HTML (Español (España))

Keywords

ELECTRE
renewable energy
HOMER PRO
economic indicators
technical indicators
isolated microgrid

How to Cite

Lliguicota Fernández, F., Ortíz González, Y., Figueroa Guerra, D., Coveña Rosado, J., Chiriboga Triviño, K., & Torres Vacacela, S. (2025). Optimization of Isolated Microgrid in the indigenous community of Teweno with HOMER PRO and the ELECTRE Multicriteria Method. Ciencia E Ingeniería, 12(1), e14533400. https://doi.org/10.5281/zenodo.14533400

ARK

https://n2t.net/ark:/60540/14533400

Abstract

The restricted energy supply in Teweno motivates the inclusion of hybrid microgrids, which converge with SDG 7 (affordable and clean energy) and SDG 13 (climate action). Access to energy continues to be a global challenge; the UN projects that by 2030: 660 million people will lack this basic service, while 2 billion will continue to depend on fossil fuels, which will worsen the effects of climate change, urging the transition to sustainable energy models. Locally, an isolated system to solve unsatisfied basic needs (UBN) was evaluated; integrating renewable energies and battery storage, using HOMER PRO® software and the ELECTRE multi-criteria method. The methodology considered climatic data on solar irradiation, temperature, wind and hydrology, as well as economic indicators such as the levelized cost of electricity (COE) and the net present cost (NPC). The results show that an architecture with photovoltaic (29.2 kW) and hydro (5.49 kW) generation and 160 batteries achieves a competitive COE of $0.304 kWh-1 and a positive NPC of $220,632 USD. The diesel generator (GENSET) is excluded, avoiding harmful emissions. This study validates the feasibility of the system, guaranteeing a production of 121,738 kWh year-1, with a surplus of 29,017 kWh that could be integrated with net metering.

https://doi.org/10.5281/zenodo.14533400
PDF (Español (España))
HTML (Español (España))

References

Abbas, A. I., Qandil, M. D., Al-Haddad, M., & Amano, R. S. (2020). Investigation of Horizontal Micro Kaplan Hydro Turbine Performance Using Multi-Disciplinary Design Optimization. Journal of Energy Resources Technology, 142(5). https://doi.org/10.1115/1.4045821

Agencia de Regulación y Control de Energía y Recursos Naturales No Renovables. (2023a). Resolución Nro. ARCERNNR-034/2023.

Agencia de Regulación y Control de Energía y Recursos Naturales No Renovables. (2023b). Pliego Tarifario del Servicio Público de Energía Eléctrica.

Amano, R., Qandil, M., Abbas, A., & Al-Haddad, M. (2019, January 7). Performance Investigation of Very-Low-Head Kaplan Hydro-Turbines. AIAA Scitech 2019 Forum. https://doi.org/10.2514/6.2019-0241

Banco Central del Ecuador. (2024). Boletín mensual de inflación. https://contenido.bce.fin.ec/documentos/PublicacionesNotas/Notas/Inflacion/inf202410.pdf

Barco, J., Córdoba, A., Escobar, E., Pantoja, A., & Caicedo, E. (2022). Optimal sizing of a grid-connected microgrid and operation validation using HOMER Pro and DIgSILENT. Scientia et Technica, 27(1), 28–34. https://doi.org/10.22517/23447214.24965

Barrozo, A., Valencia, G., Obregon, L., Arango, A., & Núñez, R. (2020). Energy, Economic, and Environmental Evaluation of a Proposed Solar-Wind Power On-grid System Using HOMER Pro®: A Case Study in Colombia. Energies, 13(7), 1662. https://doi.org/10.3390/en13071662

Basit, A., Sarosh, A., Ahmed, O. A. A., Shuaib, H., & Khan, A. R. (2024). Performance Characterization of EEEC (Eolic Energy Unit) for Horizontal Axis Wind Turbine. In Proceedings of the First International Conference on Aeronautical Sciences, Engineering and Technology (pp. 302–310). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-7775-8_32

Bazzaz, F. (1996). Plants in Changing Environments: Linking Physiological, Population and Community Ecology (Primera edición). Cambridge University Press.

Beccali, M., Cellura, M., & Ardente, D. (1998). Decision making in energy planning: the ELECTRE multicriteria analysis approach compared to a FUZZY-SETS methodology. Energy Conversion and Management, 39(16–18), 1869–1881. https://doi.org/10.1016/S0196-8904(98)00053-3

Campoverde, J., Naula, F., Coronel, K., & Romero, A. (2018). El cambio de la matriz energética en Ecuador; una perspectiva de su realidad. Revista Acordes, 8, 15–47.

Castillo, J., & Zhangallimbay, D. (2021). La tasa social de descuento en la evaluación de proyectos de inversión: una aplicación para el Ecuador. Revista de La Comisión Económica Para América Latina y El Caribe, 134, 77–98. https://repositorio.cepal.org/entities/publication/641d0a9b-d2e6-40d7-b482-1c52b961157a

Deshmukh, M. K., & Singh, A. B. (2019). Modeling of Energy Performance of Stand-Alone SPV System Using HOMER Pro. Energy Procedia, 156, 90–94. https://doi.org/10.1016/j.egypro.2018.11.100

Fundación Alejandro Labaka. (2024). Pueblos en aislamiento voluntario. https://www.fundacionlabaka.org/index.php/proyectos/pueblos/53-pueblos-en-aislamiento-voluntario

Global Petrol Prices. (2024a, August 22). Diesel prices, liter, 19-Aug-2024. https://www.globalpetrolprices.com/diesel_prices/

Global Petrol Prices. (2024b, August 24). Ecuador fuel prices, electricity prices. https://www.globalpetrolprices.com/Ecuador/

González, M., Jurado, E., González, S., Aguirre, Ó., Jiménez, J., & Navar, J. (2003). Cambio Climático Mundial: Origen y Consecuencias. Ciencia UANL, VI(003). https://www.redalyc.org/pdf/402/40260313.pdf

Homer Energy. (2024a, August 13). HOMER Pro. https://homerenergy.com/products/pro/index.html

Homer Energy. (2024b, August 24). Homer Pro 3.15. How HOMER Calculates the PV Array Power Output. https://homerenergy.com/products/pro/docs/3.15/how_homer_calculates_ the_pv_array_power_output.html

Instituto Geográfico Militar. (2013). Capas de Información Geográfica Básica (Codificación UTF-8). https://www.geoportaligm.gob.ec/portal/index.php/cartografia-de-libre-acceso-escala-50k/

Instituto Nacional de Estadísticas y Censos. (2024). Boletín Técnico Nacional: CENSO ECUADOR 2022. https://inec.censoecuador.gob.ec/public/Boletin_Nacional.html

International Renewable Energy Agency. (2023a). Renewable Power Generation Cost in 2022. IRENA.

International Renewable Energy Agency. (2023b). World Energy Transitions Outlook 2023 1.5°C Pathway. IRENA.

Mann, M. E., Bradley, R. S., & Hughes, M. K. (1998). Global-scale temperature patterns and climate forcing over the past six centuries. Nature, 392(6678), 779–787. https://doi.org/10.1038/33859

Miller, G., & Spoolman, S. (2021). Living in the Environment (20th ed.). Cengage.

Ministerio de Energía y Minas de Ecuador. (2024). Plan Maestro de Electricidad 2023-2032. https://www.recursosyenergia.gob.ec/plan-maestro-de-electricidad/

Ministerio de Energías del Estado Plurinacional de Bolivia. (2018). Estudio de determinación de Costos de Operación, Mantenimiento y Administración Fijos de Generación con base en Energías Alternativas. Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH.

NASA Prediction Of Worldwide Energy Resources. (2022). Data Access Viewer (DAV): Climate Design Conditions. https://power.larc.nasa.gov/data-access-viewer/

Noa, A., Montero, R., Legrá, A., Reyes, A., & Maresma, D. (2018). Comportamiento operacional de grupos electrógenos: particularidades del índice de consumo específico de combustible. Ingeniería Mecánica, 21(1), 19–27.

Organización de las Naciones Unidas. (2023). Informe de los Objetivos de Desarrollo Sostenible 2023: Edición Especial. Naciones Unidas. https://www.un-ilibrary.org/content/books/9789210024938/read

Organización Latinoamericana de Energía. (2023). Panorama Energético de América Latina y El Caribe (1st ed.). OLADE. https://www.olade.org/wp-content/uploads/2023/12/PANORAMA-2023.pdf

Rahmat, M. A. A., Abd Hamid, A. S., Lu, Y., Ishak, M. A. A., Suheel, S. Z., Fazlizan, A., & Ibrahim, A. (2022). An Analysis of Renewable Energy Technology Integration Investments in Malaysia Using HOMER Pro. Sustainability, 14(20), 13684. https://doi.org/10.3390/su142013684

Realpe, A., Diazgranados, J., & Acevedo, T. (2012). Electricity Generation and Wind Potential Assessment in Regions of Colombia. DYNA, 79(171), 116–122.

Salas, V., Olías, E., Barrado, A., & Lázaro, A. (2006). Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems. Solar Energy Materials and Solar Cells, 90(11), 1555–1578. https://doi.org/10.1016/j.solmat.2005.10.023

Singh, A., Baredar, P., & Gupta, B. (2015). Computational Simulation & Optimization of a Solar, Fuel Cell and Biomass Hybrid Energy System Using HOMER Pro Software. Procedia Engineering, 127, 743–750. https://doi.org/10.1016/j.proeng.2015.11.408

Smith, D. (2022). Reliability, Maintainability and Risk: Practical Methods for Engineers (10th ed.). Elsevier. https://doi.org/10.1016/C2021-0-00257-1

Taherdoost, H., & Madanchian, M. (2023). A Comprehensive Overview of the ELECTRE Method in Multi Criteria Decision-Making. Journal of Management Science & Engineering Research, 6(2), 5–16. https://doi.org/10.30564/jmser.v6i2.5637

The National Aeronautics and Space Administration. (2024, August 13). Temperatura Global. https://climate.nasa.gov/en-espanol/signos-vitales/temperatura-global/?intent=111

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2025 Frank Vladimir Lliguicota Fernández, Yadyra Monserrath Ortíz González, Danner Anderson Figueroa Guerra, Jonathan David Coveña Rosado, Kenneth David Chiriboga Triviño, Santiago Fabricio Torres Vacacela (Autor/a)

Downloads

Download data is not yet available.