Abstract
This article presents a complete model to estimate the levelized cost of energy (LCOE) of a hybrid power generation system (HPS) that uses solar photovoltaic energy and biomass gasification applied to an HPS case study located at Universidad de La Guajira, department of La Guajira, Colombia. This analysis is based on real information from the Colombian context and is the starting point for projects of a similar nature in the country, specifically in the department of La Guajira. The LCOE for the case study is 0,73 USD*kWh-1, an uncompetitive value when compared to similar systems reported in the literature; however, this result is more in line with reality since it considers more accurate O&M costs. The result obtained is contrasted with the same system analyzed by the HOMER Pro® software, obtaining a result of 0,78 USD*kWh-1 with a margin of error of 5,19%. Therefore, the methodology to calculate LCOE in HPS using PV and biomass gasification as technologies for power generation is considered valid.
References
Al-Turjman, F., Qadir, Z., Abujubbeh, M., & Batunlu, C. (2020). Feasibility analysis of solar photovoltaic-wind hybrid energy system for household applications. Computers and Electrical Engineering, 86. doi: https://doi.org/10.1016/j.compeleceng.2020.106743
Bajpai, P., & Dash, V. (2012). Hybrid renewable energy systems for power generation in stand-alone applications: A review. In Renewable and Sustainable Energy Reviews (Vol. 16, Issue 5, pp. 2926–2939). doi: https://doi.org/10.1016/j.rser.2012.02.009
Bermúdez A. (2021). Análisis de factibilidad para la implementación de centrales de concentración [Proyecto de grado para obtener el título de Magíster en ingeniería eléctrica, Universidad de Los Andes]. In Universidad de Los Andes. Recuperado de: https://repositorio.uniandes.edu.co/bitstream/handle/1992/55788/26226.pdf?sequence=1
Branker, K., Pathak, M. J. M., & Pearce, J. M. (2011). A review of solar photovoltaic levelized cost of electricity. Renewable and Sustainable Energy Reviews, 15(9), 4470–4482. doi: https://doi.org/10.1016/j.rser.2011.07.104
Castafier, L., Bermejo, S., Markvart, T., & Fragak, K. (2003). Energy Production by a PV Array . In Practical Handbook of Photovoltaics: Fundamentals and Applications (pp. 517–529). doi: https://doi.org/10.1016/b978-0-12-385934-1.00018-0
Channiwala, S., & Parikh, P. (2002). A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel, 81, 1051–1063. doi: https://doi.org/10.1016/s0016-2361(01)00131-4
Damodaran, A. (2023a). Damodaran Online. Damodaran Online. Recuperado de: https://pages.stern.nyu.edu/~adamodar/New_Home_Page/home.htm
Damodaran, A. (2023b, January). Betas by Sector (US). Damodaran Online. Recuperado de: https://pages.stern.nyu.edu/~adamodar/New_Home_Page/datafile/Betas.html
Delapedra-Silva, V., Ferreira, P., Cunha, J., & Kimura, H. (2022). Methods for Financial Assessment of Renewable Energy Projects: A Review. In Processes (Vol. 10, Issue 2). MDPI. doi: https://doi.org/10.3390/pr10020184
Dion, L., Lefsrud, M., Orsat, V., & Cimon, C. (2013). Biomass Gasification and Syngas Combustion for Greenhouse CO2 Enrichment. BioResources, 8(2), 1520–1538. doi: https://doi.org/10.15376/biores.8.2.1520-1538
Fan, J.-L., Wei, S., Yang, L., Wang, H., Zhong, P., & Zhang, X. (2019). Comparison of the LCOE between coal-fired power plants with CCS and main low-carbon generation technologies: Evidence from China. Energy, 176, 143–155. doi: https://doi.org/10.1016/j.energy.2019.04.003
Figueroa, A. (2019). Determinantes de la aceptación social de las tecnologías Energéticas renovables desde la perspectiva del usuario líder en La Guajira - Colombia [Thesis, Universidad Pontificia Bolivariana]. Recuperado de: https://repository.upb.edu.co/handle/20.500.11912/4924
García, H., Corredor, A., Calderón, L., & Gómez, M. (2013). Análisis costo beneficio de energías renovables no convencionales en Colombia. In FEDESARROLLO, Centro de Investigación Económica y Social. Recuperado de: https://repository.fedesarrollo.org.co/handle/11445/331
Garrido, H., Vendeirinho, V., & Brito, M. C. (2016). Feasibility of KUDURA hybrid generation system in Mozambique: Sensitivity study of the small-scale PV-biomass and PV-diesel power generation hybrid system. Renewable Energy, 92, 47–57. doi: https://doi.org/10.1016/j.renene.2016.01.085
Gavilema, L., & Tasiguano, K. (2022). Desarrollo de una herramienta de cálculo para la determinación del costo nivelado de energía en el contexto ecuatoriano. [Universidad Técnica de Cotopaxi ]. Recuperado de: http://repositorio.utc.edu.ec/bitstream/27000/9778/1/PI-002279.pdf
Ghenaia, C., & Janajreh, I. (2016). Design of solar-biomass hybrid microgrid system in Sharjah. Energy Procedia, 103, 357–362. doi: https://doi.org/10.1016/j.egypro.2016.11.299
Haghighat Mamaghani, A., Avella Escandon, S. A., Najafi, B., Shirazi, A., & Rinaldi, F. (2016). Techno-economic feasibility of photovoltaic, wind, diesel and hybrid electrification systems for off-grid rural electrification in Colombia. Renewable Energy, 97, 293–305. doi: https://doi.org/10.1016/j.renene.2016.05.086
Herrera, B. (2008). Acerca de la tasa de descuento en proyectos. In Quipukamayoc (29th ed., Vol. 15, pp. 101–108). doi: https://doi.org/10.15381/quipu.v15i29.5284
Herrera, Y. (2021). Diseño de un sistema híbrido fotovoltaico-biomasa para la generación de energía eléctrica en el sector cafetalero de campo redondo-amazonas [Universidad católica Santo Toribio de Magrovejo]. Recuperado de: https://tesis.usat.edu.pe/bitstream/20.500.12423/4159/1/TL_HerreraSilvaYoner.pdf
Homer energy. (n.d.). HOMER software. Homer Energy. Recuperado de: https://www.homerenergy.com/products/pro/index.html
Isaza, F., Arredondo, C., & Marenco, G. (2021). Photovoltaic power purchase agreement valuation under real options approach. Renewable Energy Focus, 36, 96–107. doi: https://doi.org/10.1016/j.ref.2020.12.006
Jarungthammachote, S., & Dutta, A. (2008). Equilibrium modeling of gasification: Gibbs free energy minimization approach and its application to spouted bed and spout-fluid bed gasifiers. Energy Conversion and Management , 49(6), 1345–1356. doi: https://doi.org/10.1016/j.enconman.2008.01.006
Ji, L., Liu, Z., Wu, Y., & Huang, G. (2022). Techno-economic feasibility analysis of optimally sized a biomass/PV/DG hybrid system under different operation modes in the remote area. Sustainable Energy Technologies and Assessments, 52. doi: https://doi.org/10.1016/j.seta.2022.102117
Juzaili, W., Abdul, H., Shaari, S., & Khairunaz, M. (2020). Modeling of soiling derating factor in determining photovoltaic output. IEEE Journal of Photovoltaics, 10(5), 1417–1423. doi: https://doi.org/10.1109/jphotov.2020.3003815
Kelly, E., Medjo Nouadje, B. A., Tonsie Djiela, R. H., Kapen, P. T., Tchuen, G., & Tchinda, R. (2023). Off grid PV/Diesel/Wind/Batteries energy system options for the electrification of isolated regions of Chad. Heliyon, 9(3). doi: https://doi.org/10.1016/j.heliyon.2023.e13906
Lai, C. S., & McCulloch, M. D. (2017). Levelized cost of electricity for solar photovoltaic and electrical energy storage. Applied Energy, 190, 191–203. doi: https://doi.org/10.1016/J.APENERGY.2016.12.153
Lazard. (2023). Lazard´s Levelized Cost of Energy v16.0.
Liu, P., Gerogiorgis, D., & Pistikopoulos, E. (2007). Modeling and optimization of polygeneration energy systems. Catalysis Today, 127(1–4), 347–359. doi: https://doi.org/10.1016/j.cattod.2007.05.024
Macías, R. J., Ceballos, C., Ordonez-Loza, J., Ortiz, M., Gómez, C. A., Chejne, F., & Vélez, F. (2022). Evaluation of the performance of a solar photovoltaic - Biomass gasifier system as electricity supplier . Energy, 269(1). doi: https://doi.org/10.1016/j.energy.2022.125046
Mattei, M., Notton, G., Cristofari, C., Muselli, M., & Poggi, P. (2006). Calculation of the polycrystalline PV module temperature using a simple method of energy balance. Renewable Energy, 31(4), 553–567. doi: https://doi.org/10.1016/j.renene.2005.03.010
McCann, R. (2020). Comment: LCOE is an undiscounted metric that distorts comparative analyses of energy costs. Electricity Journal, 33(7). doi: https://doi.org/10.1016/j.tej.2020.106812
Mekbib, S., Anwar, S., & Yusup, S. (2014). Influence of fuel moisture content and reactor temperature on the calorific value of syngas resulted from gasification of oil palm fronds. The Scientific World Journal, Article ID 121908, 2014. doi: https://doi.org/10.1155/2014/121908
Morales, Duban., & Ramírez, Daniel. (2020). Propuesta de una metodología para el cálculo del costo nivelado de energía (LCOE) en proyectos de generación renovables, basado en el flujo de caja financiero [Proyecto de grado, Universidad autónoma de Bucaramanga]. In Universidad Autónoma de Bucaramanga. Recuperado de: https://repository.unab.edu.co/handle/20.500.12749/7332
NASA. (n.d.). POWER | Data Access Viewer. Recuperado de: https://power.larc.nasa.gov/data-access-viewer/
NREL. (n.d.). NREL’s PVWatts® Calculator. Recuperado de: https://pvwatts.nrel.gov/
Odoi-Yorke, F., Abaase, S., Zebilila, M., & Atepor, L. (2022). Feasibility analysis of solar PV/biogas hybrid energy system for rural electrification in Ghana. Cogent Engineering, 9. doi: https://doi.org/10.1080/23311916.2022.2034376
Oladapo, S., Ibrahim, M., Mahmud, I., Oluwafemi, T., & Oluwafemi, K. (2019). Potential of off-grid solar PV/Biogas power generation system: case study of Ado Ekiti Slaughterhouse . International Journal of Renewable Energy Research, 9(3). doi: https://doi.org/10.20508/ijrer.v9i3.9559.g7711
Onaolapo, A. K., Sharma, G., Bokoro, P. N., Adefarati, T., & Bansal, R. C. (2023). A comprehensive review of the design and operations of a sustainable hybrid power system. Computers and Electrical Engineering, 111. doi: https://doi.org/10.1016/j.compeleceng.2023.108954
Pérez, J., Lenis, Y., Rojas, S., & León, C. (2012). Generación distribuida mediante gasificación de biomasa: un análisis técnico – económico e implicaciones por reducción de emisiones de CO2. Revista Facultad de Ingeniería Universidad de Antioquia, 62. Recuperado de: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-62302012000100016
Rashid, F., Hoque, E., Aziz, M., Nazmus, T., Islam, T., & Moker, R. (2021). Investigation of optimal hybrid energy systems using available energy sources in a rural area of Bangladesh. Energies, 14(5794). doi: https://doi.org/10.3390/en14185794
Saldarriaga-Loaiza, J. D., López-Lezama, J. M., & Villada-Duque, F. (2022). Metodologías para la estructuración de inversiones en proyectos de energía renovable Methodologies for structuring investments in renewable energy projects. Información Tecnológica, 33(3), 189–202. doi: http://doi.org/10.4067/S0718-07642022000300189
Saldarriaga-Loaiza, J. D., Villada, F., Pérez, J. F., Saldarriaga-Loaiza, J. D., Villada, F., & Pérez, J. F. (2019). Análisis de Costos Nivelados de Electricidad de Plantas de Cogeneración usando Biomasa Forestal en el Departamento de Antioquia, Colombia. Información Tecnológica, 30(1), 63–74. doi: https://doi.org/10.4067/s0718-07642019000100063
Shen, W., Chen, X., Qiu, J., Hayward, J. A., Sayeef, S., Osman, P., Meng, K., & Dong, Z. Y. (2020). A comprehensive review of variable renewable energy levelized cost of electricity. Renewable and Sustainable Energy Reviews, 133. doi: https://doi.org/10.1016/j.rser.2020.110301
Short, W., Packey, D., & Holt, T. (1995). A manual for the economic evaluation of energy efficiency and renewable energy technologies. doi: https://doi.org/10.2172/35391
Solis, A. E. M., Adrada, G. T., & Amador, G. J. (2020). Análisis de la degradación de potencia de diversas tecnologías fotovoltaicas a sol real en Madrid (España). In XVII Congreso Ibérico y XIII Congreso Iberoamericano de energía solar. Madrid, España: LNEG - Laboratório Nacional de Energia e Geologia. Recuperado de: https://repositorio.lneg.pt/bitstream/10400.9/3376/1/Cies2020_1_2038.pdf
UPME. (n.d.). Costos Nivelados de Generación de Electricidad. Geo LCOE Versión 2. Recuperado de: https://lcoev2.upme.gov.co/
Vanegas Chamorro, M., Villicaña Ortíz, E., & Arrieta Viana, L. (2015). Cuantificación y caracterización de la radiación solar en el departamento de La Guajira-Colombia mediante el cálculo de transmisibilidad atmosférica. Prospect, 13(2), 54–63. doi: https://doi.org/10.15665/rp.v13i2.487
Villegas, M., & Espinal, L. (2020). Factibilidad financiera de un proyecto de energía solar fotovoltaica financiado mediante un acuerdo de compra PPA [Tesis para obtener título de magister en administración financiera, Universidad EAFIT]. Recuperado de: https://repository.eafit.edu.co/bitstream/handle/10784/24825/LeidyJohana_EspinalZapata_MayraAlejandra_VillegasMachado_2020.pdf?sequence=2&isAllowed=y
Yohaness, F., Aziz, R., & Sulaiman, S. (2013). Study of syngas combustion parameters effect on internal combustion engine. Asian Journal of Scientific Research. doi: https://doi.org/10.3923/ajsr.2013.187.196
Zuñiga Parra, J. F. (2022). Propuesta de Esquema de Negocio para fomentar la sustitución o complementariedad de la generación con Diésel y reducir los costos de prestación. Universidad Nacional de Colombia.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2024 Yonal A. Barros Benjumea, Kellys Rodríguez Escobar, Carlos M. Ceballos Marín