Effect of radicular application of Chlorella vulgaris Beijerinck 1890, (isolated 3008A) on cucumber (Cucumis sativus L.)
PDF (Español (España))
HTML (Español (España))
XML (Español (España))
VISOR (Español (España))

Keywords

Microalgae
Biofertilizer
Camécuaro
Chlorophyta
Michoacán
Mexico

How to Cite

Hernández-González, M., Colli-Mull, J., Hernández-Barrera, A. H.-B., Castro-Guillén, J., Mora-Soto, Y., & Valdés-Santiago, L. (2023). Effect of radicular application of Chlorella vulgaris Beijerinck 1890, (isolated 3008A) on cucumber (Cucumis sativus L.). Ciencia E Ingeniería, 10(2), e10370181. https://doi.org/10.5281/zenodo.10370181

ARK

https://n2t.net/ark:/60540/10370181

Abstract

Nowadays, agriculture is highly dependent on the use of chemical fertilizers, since the high demand for food and at the same time make up for crop yield losses caused by climatic and soil conditions, need to be sustained. However, its intensive and indiscriminate use has generated several problems of environmental contamination, mainly affecting the surrounding ecosystems, as well as health problems, including neuronal problems and some types of cancer. This work describes the isolation and morphological identification of microalgae from water bodies of the Mexican Bajio and the exploration of the potential of one of them as a biofertilizer. We report three strains of microalgae Tetradesmus obliquus (Turpin) M. J. Wynne 2016 (#MH01); Chlamydomonas sp. (#0806), and Chlorella vulgaris Beijerinck 1890 (#3008A), and the cyanobacteria Gloeocapsa sp. (#0801), which were isolated from "Los Azufres" lagoon and Camécuaro lake, Michoacán, Mexico. The molecular identification of strain #3008A allowed to know the specie, C. vulgaris, besides, it was selected to probe its effect on development and growth of cucumber seedlings (Cucumis sativus L.) The μmáx = 2,012 h-1 growth kinetics and a doubling time of 0,69 days at 1100 lux and 102 rpm. The effect of application of C. vulgaris on germination, aerial and radicular growth was evaluated. This Chlorophyte stimulated cucumber (Cucumis sativus L.) seedlings growth root suggesting its potential to be used as a biofertilizer.

https://doi.org/10.5281/zenodo.10370181
PDF (Español (España))
HTML (Español (España))
XML (Español (España))
VISOR (Español (España))

References

Alvarez, A.L., Weyers, S. L., Goemann, H. M., Peyton, B. M. y Gardner, R. D. (2021). Microalgae, soil and plants: A critical review of microalgae as renewable resources for agriculture. Algal Research 54: 102200. https://doi.org/10.1016/j.algal.2021.102200

Bischoff, H. W. y Bold, H. C. (1963). Phycological Studies IV. Some Soil Algae From Enchanted Rock and Related Algal Species. University of Texas, Austin, 6318:1–95.

Bold, H. C. 1949. The morphology of Chlamydomonas chlamydogama sp. nov. Bull. Torrey Bot. Club. 76:101–8.

Bumandalai, O. y Tserennadmid, R. (2019). Effect of Chlorella vulgaris as biofertilizer on germination of tomato and cucumber seeds. International Journal of Aquatic Biology, 7:95-99.

Cano, I. y Mendoza, T. Bioprospección de microalgas nativas de la cordillera Neovolcánica. [Tesis inédita]. Instituto Tecnológico Superior de Irapuato

Csavina, J., Estuardo, B. J., Guy Riefler, R. y Vis, M. L. (2011). Growth optimization of algae for biodiesel production, Journal of Applied Microbiology, 11(2), 312-318. DOI: 10.1111/j.1365-2672.2011.05064.x

Dolganyuk, V., Belova, D., Babich, O., Prosekov, A., Ivanova, S., Katserov, D., Patyukov, N. y Sukhikh, S. (2020). Microalgae: A Promising Source of Valuable Bioproducts. Biomolecules, 10(8), 1-24. https://doi.org/10.3390/biom10081153

Eida, M., Darwesh, O. M. y Matter, I. A. (2018). Cultivation of Oleaginous Microalgae Scenedesmus obliquus on Secondary Treated Municipal Wastewater as Growth Medium for Biodiesel Production. Journal of Ecological Engineering, 19(5), 38-51. https://doi.org/10.12911/22998993/9127

Fadaei, S., Vaziriyeganeh, M., Young, M., Sherr, I. y Zwiacek, J. J. (2020). Ericoid mycorrhizal fungi enhance salt tolerance in ericaceous plants. Mycorrhiza, 30, 419–429. https://doi.org/10.1007/s00572-020-00958-8

Ferraro, G. (2022). Microalgas y biorremediación. En búsqueda de microalgas autóctonas para la remoción de metales. Experiencias en la Patagonia. Desde la Patagonia difundiendo saberes 19(33): 50-55. https://desdelapatagonia.uncoma.edu.ar/index.php/microalgas-y-biorremediacion/

Guiry, M. D. y Guiry, G. M. 2017. AlgaeBase. Word-wide electronic publication, Univerity of Ireland, Galway. Disponible en la web: http://www.algaebase.org Ultimo acceso: 11 de noviembre de 2023.

Hachicha, R., Elleuch, F., Ben Hlima, H., Dubessay, P., de Baynast, H., Delattre, C., Pierre, G., Hachicha, R., Delgado, A., Michaud, P. y Fendri, I. (2022). Biomolecules from Microalgae and Cyanobacteria: Applications and Market Survey. Appl. Sci. 2022, 12(4) 1924. https://doi.org/10.3390/app12041924

ISTA - The International Seed Testing Association (2007). International Rules for Seed Testing. Edition 2007. Bassersdorf, CH Swiezerland.

John, M. D., Whitton, B. A. y Brook, A. J. 2002. The Freshwater Algal Flora of the British Isles. An identification Guide to Freshwater and Terrestrial Algae. Cambridge University Press. 702 p.

Khasin, M., Cahoon, R. R., Nickerson, K. W. y Riekhof, W. R. (2018). Molecular machinery of auxin synthesis, secretion, and perception in the unicellular chlorophyte alga Chlorella sorokiniana UTEX 1230. PLOS ONE 13(12): e0205227. https://doi.org/10.1371/journal.pone.0205227

Komárek, J. y Anagnostidis, K. 1999. Cyanoprokaryota I: Chroococcales. Vol. 19/1. Gustav Fischer Jena Stuttgart Lübeck Ulm. 548 pp.

Komárek, J. y Anagnostidis, K. 2005. Cyanoprokaryota 2: Oscillatoriales. Vol. 19/2. Spektrum Akademischer Verlag Heidelberg. 759 pp.

Kumar, B. S., Rahman, S., Kobir, S. M. A., Ferdous, T. y Banu, N. A. (2014). A review on Impact of Agrochemicals on Human Health and Enviroment: Bangladesh Perspective. Plant Environment Development, 3(2), 31-35.

Lynch, J., Marschner, P. y Rengel, Z. (2012). Chapter 13 - Effect of Internal and External Factors on Root Growth and Development. Elsevier eBooks (pp. 331-346) https://doi.org/10.1016/B978-0-12-384905-2.00013-3

MATLAB R2013a. Natick, Massachusetts: The MathWorks Inc.

Meena, R. S., Kumar, S., Datta, R., Lal, R., Vijayakumar, V., Brtnicky, M., Sharma, M. P., Yadav, G. S., Jharina, M. K., Jangir, C. K., Pathan, S. I., Dokulilova, T., Pecina, V. y Marfo, T. D. (2020). Impact of Agrochemicals on Soil Microbiota and Management: A Review. Land, 9(2), 34. https://doi.org/10.3390/land9020034

Minitab® 19 Statistical Software. https://www.minitab.com

Morando-Grijalva, C. A., Vázquez-Larios, A. L., Alcántara-Hernández, R. J., Ortega-Clemente, L. A. y Robledo-Narváez, P. N. (2020). Isolation of a freshwater microalgae and its application for the treatment of wastewater and obtaining fatty acids from tilapia cultivation. Environmental Science and Pollution Research, 27, 28575–28584. https://doi.org/10.1007/s11356-020-08308-z

Ortiz-Moreno, M. L., Sandoval-Parra, K. X. y Solarte-Murillo, L. V. (2020). Chlorella, ¿un potencial biofertilizante? Orinoquia, 23: 71-78.

Prieto, I., González, C. y Brindley, A. (2020). Estudio del crecimiento de la microalga Chlorella vulgaris y su capacidad de depuración de agua residual [Tesis de pregrado]. Universidad de Almería, España.

Sosa- Hernández, J. E., Romero-Castillo, K. D., Parra-Arroyo, L., Aguilar-Aguila-Isaías, M. A., García-Reyes, I. E., Ahmed, I., Parra-Saldivar, R., Bilal, M. y Iqbal, H. M. N. (2019). Mexican Microalgae Biodiversity and State-Of-The-Art Extraction Strategies to Meet Sustainable Circular Economy Challenges: High-Value Compounds and Their Applied Perspectives. Marine Drugs, 17(3): 174. https://doi.org/10.3390/md17030174

Tian, S. L., Khan, A., Zheng, W. N., Song, L., Liu J. H., Wang, X. L. y Li, L. (2022). Effects of Chlorella extracts on growth of Capsicum annuum L. seedlings. Sci Rep 12(1), 15455. https://doi.org/10.1038/s41598-022-19846-6

Vildanova, G. I., Allaguvatova, R. Z., Kunsbaeva, D. F., Sukhanova, N. V. y Gaysina, L. A. (2023). Application of Chlorella vulgaris Beijerinck as a Biostimulant for Growing Cucumber Seedlings in Hydroponics. BioTech 2023, 12, 42. https://doi.org/10.3390/biotech12020042

White, T. J., Bruns, T. D., Lee, S. B. y Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide to Methods and Applications, 18(1), 315–322.

Zhu, Y., Wang, H., Lv, X., Zhang, Y. y Wang, W. (2020). Effects of biochar and biofertilizer on cadmium-contaminated cotton growth and the antioxidative defense system. Sci Rep 10, 20112. https://doi.org/10.1038/s41598-020-77142-7

ZymoBIOMICS™ DNA Miniprep Kit. (2022). Zymo Research de https://files.zymoresearch.com/protocols/_d4300t_d4300_d4304_zymobiomics_dna_miniprep_kit.pdf

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Mayra Carolina Hernández-González, Juan G. Colli-Mull, Alejandra Hernández-Barrera Hernández-Barrera, José Luis Castro-Guillén, Yamilet Mora-Soto, Laura Valdés-Santiago

Downloads

Download data is not yet available.