Artificial vision system for Classification of Cape Gooseberry based on shape and color
PDF (Español (España))
PDF Zenodo (Español (España))

Keywords

classification
fruits
pattern recognition
image processing
neural networks

How to Cite

Botello Plata , A., & Illidge Araujo , S. (2019). Artificial vision system for Classification of Cape Gooseberry based on shape and color. Ciencia E Ingeniería, 6(1), e076. Retrieved from https://revistas.uniguajira.edu.co/rev/index.php/cei/article/view/e076

Abstract

The purpose of this research is to design a system for the classification of cape gooseberries based on their shape and color, using artificial vision, neural networks and image processing, as means to achieve this objective. It is a projective type of research, in turn its method is descriptive and its source is documentary. The image processing software and the neural network of the system is developed in the Matlab programming environment, the algorithm uses the principles of image processing to crop, segment, eliminate the background and filter the photo, to finally feed the ART neural network and proceed with the recognition of the characteristics of the fruit.

PDF (Español (España))
PDF Zenodo (Español (España))

References

Norma Codex Stan 226 (2005), OMS 2005, Norma Técnica Colombiana NTC 4580 (1995).

Richard O. Duda, P.E.H., David G. Stork, Pattern classification. Second ed. 2001, New York: Wiley.

Group, W. Pattern recognition. 2007 [cited 2008 12/11/2008]; Available from: http://encyclopedia.thefreedictionary.com/Pattern%20recognition.

W.K. Jung, I.C.N., Relevance Feedback in Content- Based Image Retrieval System by Selective Region Growing in the Feature Space. Signal Processing: Image Communication, 2003. 18: p. 13.

E.Umbaugh, S., Computer Vision and Image Processing: A Practical Approach using CVIP tools.first ed. 1998: Prentice Hall Professional Technical Reference.

Pajares, G.T., A. Burgosartizzu, X.-P. Ribeiro, A, Design of a computer vision system for a differential spraying operation in precision agriculture using hebbian learning. Computer Vision, IET, 2007. 1(3- 4): p. 93-99.

González, R.C., Wintz, P. (1996). Procesamiento digital de imágenes, Addison-Wesley.

A. R. Jimenez, R.C., and J. L. Pons, A survey of Computer Vision Methods for Locating Fruit on Trees. ASAE, 2000. 43: p. 1911-1920.

Zhao, J.T., J. Katupitiya, J., On-tree fruit recognition using texture properties and color data, in international conference on Intelligent Robots and Systems. 2005, IEEE: Edmonton Canada. p. 263-268.

Grupo, T.M.R. Image Processing Toolbox User’s Guide. 2008 [cited 14th November 2008].

Pérez-Rodríguez J.; Borrell Vidal, M. (1998). Predicción multivariante de los tipos de interés en el mercado interbancario español con redes neuronales y varianza condicional.

Deco, G.; Obradovic, D. (1996). An information Theoretic approach to neural computing, Springer.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2019 Aslin Botello Plata , Stanley Illidge Araujo

Downloads

Download data is not yet available.