External optical modulation analysis in semiconductor devices
PDF (Español (España))
PDF Zenodo (Español (España))

Keywords

External optical modulation
optical fiber
semiconductor laser

How to Cite

Silva , O., Viloria , J., Campos , C., Castillo, A., Maestre , K., Miranda , K., & Ocampo , M. (2019). External optical modulation analysis in semiconductor devices. Ciencia E Ingeniería, 6(1), e073. Retrieved from https://revistas.uniguajira.edu.co/rev/index.php/cei/article/view/e073

Abstract

This paper presents an exploration of different scientific and technological research applied to the field of communications, in which two techniques of external optical modulation were analyzed: in phase and in amplitude, which are concerned with modulating the optical carrier signal externally to the semiconductor laser of the transmitter, in order to base the physical behavior of these modulators, their basic parameters (transmission index, reflection, absorption), their spectral composition and the luminous intensity generated by the laser at a constant time (wave laser keep going). Thanks to this it was possible to establish the differences, advantages and disadvantages of the two types of external optical modulation and finally it was identified that the external optical modulation in amplitude, is the most efficient technique since it does not present distortion, it transmits a greater power, it transfers a large amount of information in very short periods of time, does not generate losses and is not affected by the phenomenon of chromatic dispersion in the optical fiber. However, if the crystal is replaced by graphene, it improves the modulator response but limits its operation to a near-infrared wavelength, therefore, it is concluded that when using other materials of semiconductor nature, it expands the study of optical modulation, and employability varies by application and approach.

PDF (Español (España))
PDF Zenodo (Español (España))

References

Ahmed, M., & Bakry, A. (7 de October de 2015). Modulation Performance of semiconductor laser coupled with an ultra-short external cavity. Optics Communications 360, 52 - 60. doi:10.1016/j.optcom.2015.10.028

Álvarez, A., & Vázquez Quiroz, A. (19 de Marzo de 2013). Modulación óptica (Directa y Externa). Recuperado el 7 de Abril de 2017, de https://prezi.com/zgz0g5wjjmnk/modulacion-optica/

Balci, O., Polat, E., Kaknov, N., & Kocabas, C. (2015). Graphene-enable electrically switchable radar-absorbing surfaces. Nat Commun, 6. Recuperado el 7 de April de 2017

Cardona Fernandéz, J., & Fernández Campos, L. (2010). Estudio de técnicas de modulación para enlaces ópticos. Universidad Politécnica de Catalunya, Escuela Politécnica Superior Castelldefels. Recuperado el 8 de Abril de 2017

Estandía Rodríguez, S. (2015). Dinámica de láseres de semiconductor sometidos a retroalimentación óptica. Universidad de Cantabria, Facultad de ciencias. Recuperado el 8 de Abril de 2017

Lei, T., Deng, Q., Zhang, S., Cai, S., & Xie, C. (2016). Fast identification of CO by using single Pt-modified WO3 sensing film based on optical modulation. Sensors and Actuators B: Chemical, 506 - 513. doi:10.1016/j.snb.2016.04.001

Li, X., Yu, J., Dong, Z., Zhang, J., Chi, N., & Yu, J. (2013). Investigation of interference in multiple-input multiple-output wireless transmission at W band for an optical wireless integration system. Optics Letters, 38(5), 742 - 744. doi:10.1364/OL.38.000742

Li, X., Yu, J., Xiao, J., & Xu, Y. (2014). Fiber-wireless-fiber link for 128-Gb/s PDM-16QAM signal transmission at W-band. IEEE Photonics Technology Letters, 26(19), 1948 - 1951.

Macho Ortiz, A. (2012). Estudio y caracterización de un modulador electroóptico Mach-Zehnder. Escuela Técnica Superior de Ingenieros de Telecomunicación. Recuperado el 8 de Abril de 2017

Perilla Martinez, V. (2015). Análisis del amplificador óptico de semiconductor y su aplicación a sistemas de regeneración de onda 2R. (G. Puerto Leguizamón, Ed.) Bogotá DC. Recuperado el 8 de Abril de 2017

Polat, E., & Kocabas, C. (11 de December de 2013). Broadband optical modulators based o graphene supercapacitors. Nano Lett, 13(12), 5851 - 5857. doi:10.1021/nl402616t

Sato, K., Kuwahara, S., & Miyamoto, Y. (2005). Chirp characteristics of 40-gb/s directly modulated distributed-feedback laser diodes. Journal of lightwave technology, 23(11), 3790 - 3797. doi:10.1109/JLT.2005.857753

Universidad Complutense de Madrid. (2001). Laboratorio de dispositivos. Facultad de ciencias físicas, Madrid. Recuperado el 8 de Abril de 2017

Wang, H., Zhou, Y., Xu, X., Zhu, L., Xia, W., Qi, M., . . . Ren, Z. (31 de January de 2017). Optical modulation characteristics of graphene supercapacitors at oblique incidence in visible-infrared region. Solid-State Electronics An international Journal, 1-8. doi:10.1016/j.sse.2017.01.014

Wu, Y., La-o-vorakiat, C., Qiu, X., Liu, J., Deorani, P., Banerjee, K., . . . Yang, H. (3 de February de 2015). Graphene terahertz modulators by ionic liquid gating. Adv Mater, 27(11), 1874 - 1879. doi:10.1002/adma.201405251

Yu, J., & Zhang, J. (May de 2016). Recent progress on high-speed optical transmission. Digital Communications and Networks, 2(2), 65 - 76. doi:j.dcan.2016.03.002

Zhang, Y. (2017). Optical wireless integration based on phase modulator down-conversion for W-band QPSK signal delivery. Optics Communications, 140 - 143. doi:10.1016/j.optcom.2016.12.078

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2019 O. Silva , J. Viloria , C. Campos , A. Castillo, K. Maestre , K. Miranda , M. Ocampo

Downloads

Download data is not yet available.