Evaluación del uso de Trichoderma sp. y microorganismos de montaña como bioestimulantes del crecimiento de Phaseolus sp.

Evaluación del uso de Trichoderma sp. y microorganismos de montaña como bioestimulantes del crecimiento de Phaseolus sp.

Autores/as

DOI:

https://doi.org/10.5281/zenodo.12809589

Palabras clave:

bioestimulantes, microorganismos de montaña, Phaseolus sp., Trichoderma sp., porotos, frijol

Resumen

La evaluación del crecimiento de porotos o frijoles Phaseolus sp. mediante el uso de bioestimulantes es esencial debido a la creciente demanda de métodos agrícolas sostenibles. Este estudio presenta los resultados de la evaluación del efecto de Trichoderma sp., de los microorganismos de montaña, y una combinación de ambos en el crecimiento de Phaseolus sp. Los resultados indicaron que la combinación de Trichoderma sp. y los microorganismos de montaña fue el tratamiento más efectivo, con un promedio de altura de 28 cm y 90 semillas germinadas de 144. El tratamiento con microorganismos de montaña mostró un crecimiento promedio de 26,5 cm y 78 semillas germinadas, mientras que el tratamiento con Trichoderma sp. alcanzó 21 cm de altura y 61 semillas germinadas. El control, aunque mostró un crecimiento promedio de 25,5 cm y 68 semillas germinadas, presentó contaminación con hongos, lo cual podría comprometer la viabilidad de los plantones a largo plazo. En conclusión, el uso de biofertilizantes, especialmente la combinación de Trichoderma sp. y microorganismos de montaña, es una alternativa prometedora para mejorar el crecimiento de Phaseolus sp. Estos tratamientos no solo promueven un crecimiento robusto y saludable, sino que también ofrecen ventajas en términos de sostenibilidad agrícola.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Julio Mora, Universidad De Panamá

Licenciado en Biología de la Facultad de Ciencias Naturales, Exactas y Tecnología en la Universidad De Panamá, Ciudad de Panamá, Panamá

Gretchell Regalado, Universidad de Panamá

Licenciada en Biología de la Facultad de Ciencias Naturales, Exactas y Tecnología en la Universidad De Panamá, Ciudad de Panamá, Panamá

Alexis de la Cruz, Universidad de Panamá

Docente investigador en Microbiología. coordinador de la Escuela de Microbiología en el Centro Regional Universitario de Azuero, Universidad de Panamá. Se desempeñó como Jefe del Departamento de Calidad de Agua En el Ministerio de Salud, Los Santos, Panamá. Doctorado en Investigación, mención Ciencias Ambientales (Microbiología y Parasitología).

José Rogelio Fung Corro, Universidad de Panamá

Docente investigador del Centro de Tecnologías Aplicadas Shen Kuo. Fundador del grupo de Investigación Ciencia, Tecnología y Sistemas Informáticos. Investigador en Lenguajes de Programación, Nomenclatura de Ciencia y Tecnología de la UNESCO. Investigación y conocimientos en Sistemas de Información en entornos empresariales, ingeniería y tecnología, inteligencias de negocios, computación móvil en salud, tecnologías en educación, calidad de software. Instructor académico en la Organización de Estados Iberoamericanos para la Educación, la Ciencia y la Cultura, Madrid. Presidente de la Comisión de Plataformas Virtuales y Tecnologías de Información y Comunicación con la Universidad de Panamá, ciudad de Panamá, Panamá. Master en las Tic´s, Universidad Especializada de Américas, Panamá.

Citas

Alori, E. T., Glick, B. R. & Babalola, O. O. (2017). Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Frontiers in Microbiology, 8, 971. https://doi.org/10.3389/fmicb.2017.00971

Atlas, R. M. & Bartha, R. (1998). Microbial Ecology. Fundamentals and applications. Editorial Benjamin / Cummings Publishing Company, Inc., Menlo Park, California, U.S.A.

Backer, R., Rokem, J. S., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E., Subramanian, S. & Smith, D. L. (2018). Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Frontiers in Plant Science, 9, 1473. https://doi.org/10.3389/fpls.2018.01473

Bashan, Y., de-Bashan, L. E., Prabhu, S. R. & Hernandez, J. P. (2014). Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998-2013). Plant and Soil, 378(1-2), 1-33. https://doi.org/10.1007/s11104-013-1956-x

Behie, S. W. & Bidochka, M. J. (2014). Nutrient transfer in plant–fungal symbioses. Trends in Plant Science, 19(11), 734-740. https://doi.org/10.1016/j.tplants.2014.06.007

Bona, E., Todeschini, V., Cantamessa, S., Cesaro, P., Copetta, A., Lingua, G., Gamalero, E., Berta, G. & Massa, N. (2018). Combined bacterial and mycorrhizal inocula improve tomato quality at reduced fertilization, Scientia Horticulturae 234:160-165. https://doi.org/10.1016/j.scienta.2018.02.026

Brotman, Y., Landau, U., Cuadros-Inostroza, Á., Takayuki, T., Fernie, A. R., Chet, I. (2013). Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLOS Pathogens 9(4): https://doi.org/10.1371/annotation/8b818c15-3fe0-4e56-9be2-e44fd1ed3fae

Callejas, R., Rojo, E., Benavidez, C. & Kania, E. (2012). Crecimiento y distribución de raíces y su relación con el potencial productivo de parrales de vides de mesa. Agrociencia, 46(1), 23- 35 http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952012000100003&lng=es&nrm=iso

Calvo, P., Nelson, L. & Kloepper, J. W. (2014). Usos agrícolas de bioestimulantes de plantas. Plant and Soil, 383(1-2), 3-41. https://doi.org/10.1007/s11104-014-2131-8

Campos, E. V. R., Proença, P. L. F., Oliveira, J. L., Bakshi, M., Abhilash, P. C. & Fraceto, L. F. (2019). Uso de insecticidas botánicos para la agricultura sostenible: Perspectivas futuras. Ecological Indicators, 105, 483-495. https://doi.org/10.1016/j.ecolind.2018.04.038

Cappuccino, J. G. & Sherman, N. (2014). Microbiology: A Laboratory Manual. Pearson.

Cargua, J. E., Orellana, G. L., Cuenca, A. del C.& Cedeño, G. A. (2019). Eficacia de bioestimulantes sobre el crecimiento inicial de plantas de fréjol común (Phaseolus vulgaris L.).10 (1):14-22. https://revistasespam.espam.edu.ec/index.php/Revista_ESPAMCIENCIA/article/view/184/179

Castro-Barquero, L., Martínez Vargas, V., Castro Zúñiga, O & Blanco Meneses, M. (2020). Abono orgánico, microorganismos de montaña (MM) y fertibiol para el control biológico de la hernia de las crucíferas (Plasmodiophora brassicae wor.) en el cultivo de mostaza china (Brassica rapa sp. pekinensis var. Taranko F1). Agronomía Costarricense, 44(2). https://doi.org/10.15517/rac.v44i2.43088

Colla, G., Hoagland, L., Ruzzi, M., Cardarelli, M., Bonini, P., Canaguier, R. & Rouphael Y. (2017). Biostimulant Action of Protein Hydrolysates: Unraveling Their Effects on Plant Physiology and Microbiome. Front Plant Sci. 22(8):2202. https://doi.org/10.3389/fpls.2017.02202

Contreras-Cornejo, H. A., Macías-Rodríguez, L., Alfaro-Cuevas, R. & López-Bucio, J. (2014). Trichoderma spp. Improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na⁺ elimination through root exudates. Mol Plant Microbe Interact, 27(6):503-514. https://doi:10.1094/MPMI-09-13-0265-R

Döbereiner, J. A. (1997). Importância da fixação biológica de nitrogênio para a agricultura sustentável. Biotecnologia Ciência & Desenvolvimento, 1(1), 2-3.

Du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196, 3-14. https://doi.org/10.1016/j.scienta.2015.09.021

Frac, M., Hannula, S. E., Belka, M. & Jędryczka, M. (2018). Fungal biodiversity and their role in soil health. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2018.00707

Gams, W. & Bissett, J. (1998). Morphology and identification of Trichoderma. In: Trichoderma and Gliocladium (1998) Kuricek, C. & Harman, G. E. Editores. (pp. 3-34). CRC Press.

Gouda, S., Kerry, R. G., Das, G., Paramithiotis, S., Shin, H. S. & Patra, J. K. (2018). Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological Research, 206, 131-140. https://doi.org/10.1016/j.micres.2017.08.016

Hardoim, P. R., van Overbeek, L. S., Berg, G, Pirttilä, A. M., Compant, S., Campisano, A., Döring, M. & Sessitsch, A. (2015). The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, 79(3), 293-320. https://doi.org/10.1128/mmbr.00050-14

Harman, G. E. (2000). Myths and dogmas of biocontrol: changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Disease, 84(4), 377-393. https://doi.org/10.1094/PDIS.2000.84.4.377

Harman, G. E. (2006). Overview of mechanisms and uses of Trichoderma spp. Phytopathology, 96(2), 190-194. https://doi.org/10.1094/PHYTO-96-0190

Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species—opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2(1), 43-56. https://doi.org/10.1038/nrmicro797.

Harman, G. E. (2011). Multifunctional fungal plant symbionts: new tools to enhance plant growth and productivity. New Phytol, 189(3), 647-649. https://doi.org/10.1111/j.1469-8137.2010.03614.x

López-Bucio, J., Pelagio-Flores, R., & Herrera-Estrella, A. (2015). Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Scientia Horticulturae, 196, 109-123. https://doi.org/10.1016/j.scienta.2015.08.043

Medina-Flores, C. M., Talavera-Loza, J. A., Rostrán-Molina, J. L. & Bárcenas-Lanzas, M. J. (2014). Efecto de dosis y aplicaciones edáficas y foliar de microorganismos de montaña con y sin sales minerales en el rendimiento del cacao (Theobroma cacao L.) variedad criolla. Nicaragua: Universidad Nacional Autónoma de Nicaragua. http://hdl.handle.net/123456789/4300

Muñoz-Díaz, A. J. (2020). Ventajas de los biopreparados para controlar enfermedades, como alternativa de la agricultura orgánica. Babahoyo: Universidad Técnica de Babahoyo. http://dspace.utb.edu.ec/handle/49000/8511

Muñoz Quintana, M., Alcívar Torres, L., Ruiz Parrales, Y., Álvarez Contreras, C. & Vásquez Contreras, S. (2024). Efecto de la aplicación de ácido giberélico, microorganismos nativos, Trichoderma sp. y melaza en el cultivo de banano (Musa x paradisiaca L). Conocimiento Global, 9(2), 270-287. https://conocimientoglobal.org/revista/index.php/cglobal/article/view/414

Noda, Y. (2009). Las micorrizas: Una alternativa de fertilización ecológica en los pastos. Pastos y Forrajes, 32(2). http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03942009000200001&lng=es&tlng=es

Pieterse, C. M., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C., & Bakker, P. A. (2014). Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, 52, 347-375. https://doi.org/10.1146/annurev-phyto-082712-102340

Pii, Y., Mimmo, T., Tomasi, N., Terzano, R., Cesco, S. & Crecchio C. (2015). Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biol Fertil Soils, 51(4), 403-415. https://doi.org/10.1007/s00374-015-0996-1

Raaijmakers, J. M., Paulitz, T. C., Steinberg, C., Alabouvette, C. & Moënne-Loccoz, Y. (2009). The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant and Soil, 321(1), 341-361. https://doi.org/10.1007/s11104-008-9568-6

Rillig, M. C., Aguilar‐Trigueros, C. A., Bergmann, J., Verbruggen, E., Veresoglou, S. D., & Lehmann, A. (2015). Plant root and mycorrhizal fungal traits for understanding soil aggregation. New Phytologist, 205(4), 1385-1388. https://doi.org/10.1111/nph.13045

Rodríguez, E., Lorenzo, E., De Gracia, R., González, G. y González, F. (1997). Manual técnico del manejo integrado del frijol común o poroto (Phaseolus vulgaris L.) en el sistema de mínima labranza de Panamá. IDIAP. pp 75.

Rouphael, Y., & Colla, G. (2020). Editorial: Biostimulants in agriculture. Frontiers in Plant Science, 11, 40. https://doi.org/10.3389/fpls.2020.00040

Rouphael, Y., Spíchal, L., Panzarová, K., Casa, R., & Colla, G. (2018). High-throughput plant phenotyping for developing novel biostimulants: from lab to field or from field to lab? Frontiers in Plant Science, 9, 1197. https://doi.org/10.3389/fpls.2018.01197

Torres-Pérez, J. C., Aguilar Jiménez, C. E., Vázquez Solís, H., Solís López, M., Gómez Padilla, E. & Aguilar Jiménez, J. R. (2022). Evaluación del uso de microorganismos de montaña activados en el cultivo de rosas, Zinacantán, Chiapas, México. Siembra, 9(1), e3500. https://doi.org/10.29166/siembra.v9i1.3500

Yakhin, O. I., Lubyanov, A. A., Yakhin, I. A., & Brown, P. H. (2017). Biostimulants in plant science: a global perspective. Frontiers in Plant Science, 7, 2049. https://doi.org/10.3389/fpls.2016.02049

Descargas

Publicado

2024-07-28

Cómo citar

Mora, J., Regalado, G., de la Cruz, A., & Fung Corro, J. (2024). Evaluación del uso de Trichoderma sp. y microorganismos de montaña como bioestimulantes del crecimiento de Phaseolus sp. Ciencia E Ingeniería (hasta Agosto De 2024), 11(2), e12809589. https://doi.org/10.5281/zenodo.12809589
Loading...